$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 \dots = \sum_{n=0}^{\infty} x^n$$

|               | Taylor Series Estimate                | Taylor Series Estimate            | Taylor Series Estimate            |
|---------------|---------------------------------------|-----------------------------------|-----------------------------------|
| unction Value | (first 2 terms) include Error         | (first 3 terms) include Error and | (first 4 terms) include Error and |
|               | and  3rd term                         | 4th term                          | 5th term                          |
|               | ESTIMATE = 1 = (1)                    | ESTIMATE ≈ . 877604               | ESTIMATE & , 877582               |
|               | THIRD TERM = (1)4                     | FOURTH TERM 2000 217014           | FIFTH TOLM<br>\$ ,000000 968812   |
| cos(0.5)      | = .00 a 6 04                          | 1 1 2                             |                                   |
|               | = \ \cos(\frac{1}{2}) - \frac{7}{8} \ | € . 000021605                     | € .0000000 966 126                |
|               | = .00258                              |                                   |                                   |
|               | ESTIM #TE ≈ , 6796875                 | ESTIMATE \$ 68166504              | ESTIMATE 2,681638                 |
| sin(0.75)     | THIRD TERM \$                         | FOURTH TERM 0000 26485            | FIFTH TOWN 200913                 |
| sin(0.75)     | EREDE<br>≈ .00195126                  | ERROR<br>2.000026279              | Eeroe 2.0000000005859             |

| ERROR | = | an+1 |

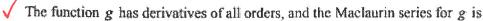
" ALTERNATING SERIES

SERIES ERROR BOUND

### Absolute vs Conditional Convergence

A series  $\sum_{n=0}^{\infty} a_n$  converges absolutely if the absolute value series  $\sum_{n=0}^{\infty} |a_n|$  converges. A series  $\sum_{n=0}^{\infty} a_n$  converges conditionally if the absolute value series  $\sum_{n=0}^{\infty} |a_n|$  diverges, but  $\sum_{n=0}^{\infty} a_n$  converges.

our nurnoses, compare the following alternating series


| For our purposes, compare the following alternating series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \qquad \begin{array}{c} A \cdot S \cdot T \cdot \\ \text{convenses} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converses of A.S.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sum_{n=1}^{\infty} n \qquad \text{Converces}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $n=1$ $n^2$ A.S.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\left  \frac{OO}{N} \right  = \frac{OO}{N} = \frac{1}{N} \frac{\text{DIVERGES}}{\text{HAMMONIC}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | converses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V=1 N N=1 HUMONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{20}{N=1} \left  \frac{(-1)^n}{n^2} \right  = \frac{20}{N=1} \frac{1}{N^2} \frac{\text{converses}}{\text{Ap-series}}$ $\frac{1}{N=1} \frac{1}{N^2} \frac{1}{N^2} = \frac{1}{N^2} \frac{1}{$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1< q lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CONVERSES COMOITIONALLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONVERGES ABSOLUTELY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Example: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^{2n}}{n!}$ seems convergence of $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^{2n}}{n!}$ seems convergence | es $\left(\frac{3}{2}\right)$ $=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| li (~1) 1 3 n!   B/C U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mit <   N=1 N!  SINCE L < 1 SERIES CONVERBES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N=00 (-1)n+1 3=n (n+1)!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\frac{1}{n} = \frac{1}{n} \left  \frac{(-1)}{n} \right  = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (n+n) = (m+n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONVERGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## **Alternating Series Error Bound**

For each question below:

- a. find an approximation to the sum of the infinite series using the indicated number of terms.
- b. set up an inequality to determine the maximum error for your approximation. Find this maximum error.
- c. use your answer from part (b) to find an interval where the sum of the infinite series must exist.  $\int_{-\infty}^{\infty} \frac{(-1)^{n+1}(3)}{2}$  using six terms

|    | c. use your answer from part (b) to find all interval where the sam of the infinite series must exist. |                                                                                                                                                                                  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n)}{2^n}$ , using three terms                                   | $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (3)}{n^2} \text{ using six terms}$                                                                                                         |  |  |  |  |  |
|    | $a. \approx \frac{(+1)(1)}{2} + \frac{(-1)(2)}{2} + \frac{(+1)(3)}{2} = \frac{3}{8}$                   | $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (3)}{n^2} \text{ using six terms}$ $\approx \frac{3}{1} - \frac{3}{4} + \frac{3}{9} - \frac{3}{16} + \frac{3}{25} - \frac{3}{36} = 2.4325$ |  |  |  |  |  |
|    | b.   ERROR   =   a4     ERROR   = 4                                                                    | b.   energe   =   a=     E   = 49                                                                                                                                                |  |  |  |  |  |
|    | -1 < EDROR & 4                                                                                         | C. 2.37128 = f(x) < 2.49372                                                                                                                                                      |  |  |  |  |  |
|    | $c.\left(\frac{8}{7} < t(x) < \frac{8}{2}\right)$                                                      |                                                                                                                                                                                  |  |  |  |  |  |
|    | $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ using five terms                                               | $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ using four terms}$ $a. 2 - 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} = -\frac{7}{12}$                                             |  |  |  |  |  |
| a. | $\approx -1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120}$ $= -\frac{19}{2}$              | a. 2 - 1 + 2 3 + 4 12                                                                                                                                                            |  |  |  |  |  |
| ь, | E   =   \frac{1}{700}                                                                                  | b.   Energe   5 5                                                                                                                                                                |  |  |  |  |  |
| c. | -457<br>720 < f(x) = -91<br>144                                                                        | C. ====================================                                                                                                                                          |  |  |  |  |  |



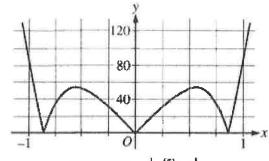
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at  $x = \frac{1}{2}$  is an alternating series whose terms decrease in absolute value to 0. The approximation for  $g\left(\frac{1}{2}\right)$  using the first two nonzero terms of this series is  $\frac{17}{120}$ . Show that this approximation differs from  $g\left(\frac{1}{2}\right)$  by less than  $\frac{1}{200}$ .
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

The Maclaurin series for a function f is given by  $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^n = x - \frac{3}{2} x^2 + 3x^3 - \dots + \frac{(-3)^{n-1}}{n} x^n + \dots$  and converges to f(x) for |x| < R, where R is the radius of convergence of the Maclaurin series.

- (a) Use the ratio test to find R.
- (b) Write the first four nonzero terms of the Maclaurin series for f', the derivative of f. Express f' as a rational function for |x| < R.
- (c) Write the first four nonzero terms of the Maclaurin series for  $e^x$ . Use the Maclaurin series for  $e^x$  to write the third-degree Taylor polynomial for  $g(x) = e^x f(x)$  about x = 0.

The Taylor series for a function f about x = 1 is given by  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n} (x-1)^n$  and converges to f(x) for |x-1| < R, where R is the radius of convergence of the Taylor series.


- (a) Find the value of R.
- (b) Find the first three nonzero terms and the general term of the Taylor series for f', the derivative of f, about x = 1.
- (c) The Taylor series for f' about x = 1, found in part (b), is a geometric series. Find the function f' to which the series converges for |x-1| < R. Use this function to determine f for |x-1| < R.

A function f has derivatives of all orders at x = 0. Let  $P_n(x)$  denote the nth-degree Taylor polynomial for f about x = 0.

- (a) It is known that f(0) = -4 and that  $P(\frac{1}{2}) = -3$ . Show that f'(0) = 2.
- (b) It is known that  $f''(0) = -\frac{2}{3}$  and  $f'''(0) = \frac{1}{3}$ . Find  $P_3(x)$ .
- (c) The function h has first derivative given by h'(x) = f(2x). It is known that h(0) = 7. Find the third-degree Taylor polynomial for h about x = 0.

Let  $f(x) = \sin(x^2) + \cos x$ . The graph of  $y = |f^{(5)}(x)|$  is shown above.

- (a) Write the first four nonzero terms of the Taylor series for  $\sin x$  about x = 0, and write the first four nonzero terms of the Taylor series for  $\sin(x^2)$  about x = 0.
- (b) Write the first four nonzero terms of the Taylor series for cos x about x = 0. Use this series and the series for sin(x²), found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.



Graph of  $y = \left| f^{(5)}(x) \right|$ 

- (c) Find the value of  $f^{(6)}(0)$ .
- (d) Let  $P_4(x)$  be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of  $y = \left| f^{(5)}(x) \right|$  shown above, show that  $\left| P_4 \left( \frac{1}{4} \right) f \left( \frac{1}{4} \right) \right| < \frac{1}{3000}$ .

Let  $f(x) = \ln(1 + x^3)$ .

- (a) The Maclaurin series for  $\ln(1+x)$  is  $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \dots$ . Use the series to write the first four nonzero terms and the general term of the Maclaurin series for f.
- (b) The radius of convergence of the Maclaurin series for f is 1. Determine the interval of convergence. Show the work that leads to your answer.
- (c) Write the first four nonzero terms of the Maclaurin series for  $f'(t^2)$ . If  $g(x) = \int_0^x f'(t^2) dt$ , use the first two nonzero terms of the Maclaurin series for g to approximate g(1).
- (d) The Maclaurin series for g, evaluated at x = 1, is a convergent alternating series with individual terms that decrease in absolute value to 0. Show that your approximation in part (c) must differ from g(1) by less than  $\frac{1}{5}$ .

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by  $g(x) = 1 + \int_0^x f(t) dt$ .

- (a) Write the first three nonzero terms and the general term of the Taylor series for  $\cos x$  about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
- (c) Write the fifth-degree Taylor polynomial for g about x = 0.
- (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than  $\frac{1}{6!}$ .

The Maclaurin series for the function f is given by  $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n (2x)^n}{n-1}$  on its interval of convergence.

- (a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
- (b) Show that y = f(x) is a solution to the differential equation  $xy' y = \frac{4x^2}{1 + 2x}$  for |x| < R, where R is the radius of convergence from part (a).

The Maclaurin series for  $e^x$  is  $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$ . The continuous function f is defined by  $f(x) = \frac{e^{(x-1)^2} - 1}{(x-1)^2}$  for  $x \ne 1$  and f(1) = 1. The function f has derivatives of all orders at x = 1.

- (a) Write the first four nonzero terms and the general term of the Taylor series for  $e^{(x-1)^2}$  about x=1.
- (b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (c) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).
- (d) Use the Taylor series for f about x = 1 to determine whether the graph of f has any points of inflection.

#### No Calculators here.

1. Given  $f(x) = \frac{1}{1-x}$ , approximate f(0.1) using a second degree MacLaurin Polynomial and find the error.

$$f(.1) = \frac{1}{2} = \frac{1}{9} \approx 1.7$$
 $P(x) = 1 + x + x^{a}$ 
 $P(.1) = 1.11$ 

2. Find the error bound involved in calculating the sum of the first six terms of the series  $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ .

# Taylor's Remainder Theorem or Lagrange Error Bound

$$|R_n| \le \frac{f^{n+1}(z)|x-a|^{n+1}}{(n+1)!}$$

(Compare w/ Taylor Polynomial Formula)

- $f^{n+1}(z)$  is the maximum value between a and x by looking at the next unused term. (looking at the n+1 derivative of f(x))
- 3. Find the error bound for  $f(x) = \frac{1}{1-x}$ , using a second degree McLaurin Polynomial at f(0.1).

Find the error bound for 
$$f(x) = \frac{1}{1-x}$$
, using a second degree McLaurin Polyn
$$f(x) = (1-x)^{-1}$$

$$f'(x) = -1(1-x)^{-2}$$

$$f'(x) = -1(1-x)^{-3}$$

$$t_{i}(x) = -1(1-x)$$

$$b_{n}(x) = -9(1-x)_{-3}$$

$$f'''(x) = 6(1-x)^{4} = \frac{6}{6}$$

$$\frac{8\left(\frac{10}{9}\right)^{4}\left(\frac{1}{10}\right)^{3}}{8^{1}\cdot 8^{1}} = \frac{10}{9^{14}} \frac{10}{8^{1}\cdot 8^{1}} = 0015$$

## You can now use calculators here.

4. Write a fourth-degree Maclaurin polynomial for  $f(x) = e^x$ . Then use your polynomial to approximate  $e^{-1}$ . ≈ ,367 879 Approximate the error bound for the maximum error for this approximation.

$$1+x+\frac{x^2}{a!}+\frac{x^3}{3!}+\frac{x^4}{4!}$$
 $e^{-1}=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}$ 

5. Find the fourth-degree Taylor polynomial for  $\cos x$  about x = 0. Then use your polynomial to approximate the value of cos 0.8, and determine the error bound for the maximum error of this approximation.

$$1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{4}}{4!} = \frac{x^{4}}{24} = \frac{x^{6}}{2} = \frac{x^{6$$

x,000 3641

≈.696707

Error  $\leq \left| \frac{(8)^6}{61} \right| = \frac{8}{61}$ 

6. Find the radius and interval of convergence for

$$-1 < \frac{x-a}{3} < 1$$
 $-3 < x-a < 3$ 

7. Let 
$$f$$
 be the function defined by  $f(x) = \sqrt{x}$ .

7. Let 
$$f$$
 be the function defined by  $f(x) = \sqrt{x}$ .  
a. Find the second-degree Taylor polynomial about  $x = 4$  for the function  $f$ .  $P(x) = 2(x-4)^{6} + 1(x-4)^{6}$   
b. Use your answer to estimate the value of  $f(4.2)$ .

c. Find a bound on the error for the approximation in part b.  $f(x) = \sqrt{x} = x^{2}$  f'(4) = 2

$$t_{n}(x) = \frac{1}{1} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{1} \times \frac{1}{2} \times \frac{1$$

$$f'''(x) = \frac{3}{8} \times f^{(7)}(4) = \frac{3}{8.32}$$

| X | h(x) | h'(x)           | h''(x)    | h'''(x)    | $h^{(4)}(x)$      |
|---|------|-----------------|-----------|------------|-------------------|
| 1 | 11   | 30              | 42        | 99         | 18                |
| 2 | 80   | 128             | 488<br>3  | 448        | <u>584</u><br>9   |
| 3 | 317  | $\frac{753}{2}$ | 1383<br>4 | 3483<br>16 | $\frac{1125}{16}$ |

Let h be a function having derivatives of all orders for x > 0. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval  $1 \le x \le 3$ .

- (a) Write the first-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.
- (b) Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).
- (e) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about x = 2 approximates h(1.9) with error less than  $3 \times 10^{-4}$ .

a. 
$$h(x) \approx 80 (x-2)^{\circ} + \frac{128 (x-3)^{\circ}}{1!}$$
 $h(1.9) \approx 80 + 128 (\frac{1}{10}) = 80 - 12.8 = 67.2$ 

Linear mersex of  $67.3$  is an under appreximation

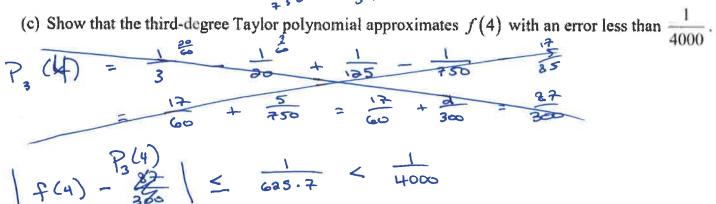
BECAUSE  $h''(1.9) > 0$ .

b.  $h(x) \approx 80 + 128 (x-2) + \frac{488}{3.2!} (x-2)^{\circ} + \frac{443}{3.3!} (x-2)^{\circ}$ 
 $h(1.9) \approx 80 - 12.8 + \frac{488}{3.2!} (\frac{1}{100}) + \frac{448}{18} (\frac{1}{1000})$ 
 $\approx 67.2 + \frac{488}{6100} - \frac{448}{18(1000)} = 67.9884$ 

C.  $h(1.9) - 67.9884 / 4 = \frac{67.98}{3.4!} (1.9-2)^{\circ} = 2.703 \times 10^{\circ} < 3 \times 10^{\circ}$ 

- 9. Calculator not permitted.
- The Taylor series about x = 3 for a certain function f converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 3 is given by

$$f^{(n)}(3) = \frac{(-1)^n n!}{5^n (n+3)}$$
 and  $f(3) = \frac{1}{3}$ 


(a) Write the fourth-degree Taylor polynomial for f about x = 3.

$$f(x) \approx \frac{\frac{1}{3}}{0!} (x-3)^{3} + \frac{(-1)}{5(4) \cdot 1!} (x-3)^{3} + \frac{2!}{5^{3}(5)2!} (x-3)^{3}$$

$$= \frac{1}{5^{3}(6)} (x-3)^{3} + \frac{1}{5^{4}(7)} (x-3)^{4}$$

(b) Find the radius of convergence of the Taylor series for f about x = 3.

$$\frac{1}{n-3\infty} \left[ \frac{(-1)^{n+1}}{(-1)^n} \frac{5^n}{5^{n+1}} \frac{(x-3)^n}{(x-3)^n} \frac{(n+5)}{(n+4)} \right] = \frac{x-3}{5}$$

