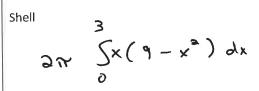
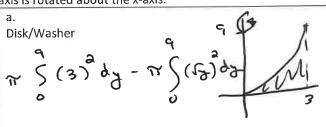
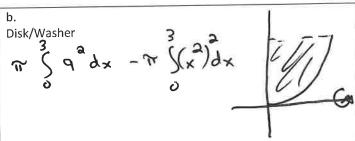
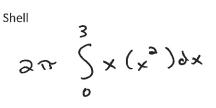

- 1. Use $y = x^2, 0 \le x \le 3$
- a. Write the integral that would find the volume of the rotated solid formed when the region bounded by the function and the x-axis is rotated about the x-axis.
- b. Write the integral that would find the volume of the rotated solid formed when the region bounded by the function and the y-



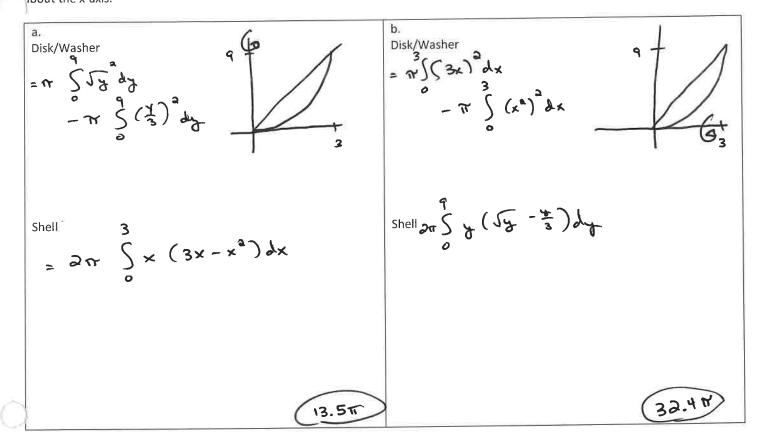


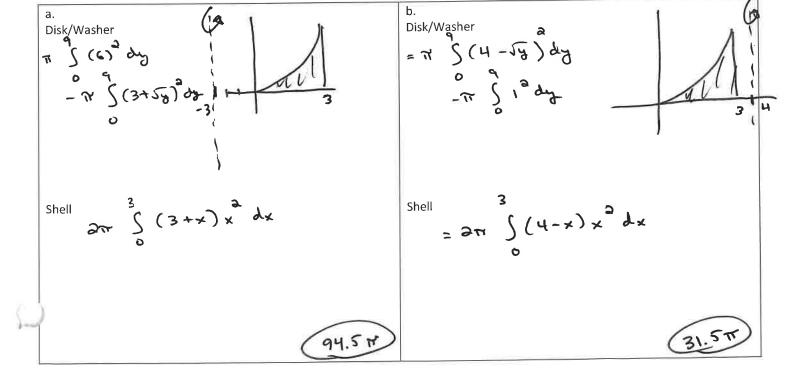


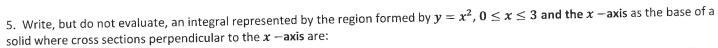

48.60

(40.5 TT

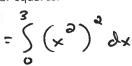
- 2. Use = x^2 , $0 \le x \le 3$
- a. Write the integral that would find the volume of the rotated solid formed when the region bounded by the function and the x-axis is rotated about the y-axis.
- b. Write the integral that would find the volume of the rotated solid formed when the region bounded by the function and the yaxis is rotated about the x-axis.



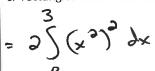

40.50

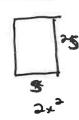

194.47

- 3. Use $y = x^2$ and y = 3x, $0 \le x \le 3$
- a. Write the integral that would find the volume of the rotated solid formed when the region bounded by the functions is rotated about the y-axis.
- b. Write the integral that would find the volume of the rotated solid formed when the region bounded by the functions is rotated about the x-axis.



4. Rotate $y=x^2$, $0 \le x \le 3$ and x-axis about lines a. x=-3 and then b. x=4.


a. squares.



b. quarter circles $= \frac{\pi}{4} \int_{0}^{3} (x^{3})^{3} dx$

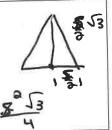
c. rectangles where the height is twice the base.

d. equilateral triangles

3

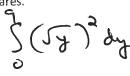
(x³)

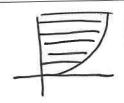
3

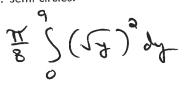

4

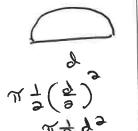
(x³)

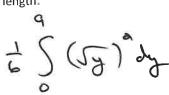
3

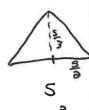

4

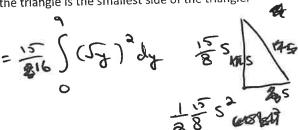

(x³)

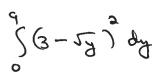

6. Write, but do not evaluate, an integral represented by the region formed by $y = x^2$, $0 \le x \le 3$ and the y —axis as the base of a solid where cross sections perpendicular to the y —axis are:


a. squares.




b. semi-circles.


c. isosceles triangles where the height is a third of the base length.


$$A = \frac{S^2}{6}$$

d. right triangles with sides lengths of ratio 8:15:17 where the base of the triangle is the smallest side of the triangle.

7. Write, but do not evaluate, an integral represented by the region formed by $y = x^2$, $0 \le x \le 3$ and the x -axis as the base of a solid where cross sections perpendicular to the y -axis are:

a. squares.

b. quarter circles $\frac{\pi}{4} = \int_{0}^{4} (3-54)^{3} dy$

