can you help me write python code for euler's method of approximation? I would like to be able to input an expression for the differential equation, an input for the x and y coordinates of the initial condition, an input for the ending x-coordinate, and an input for the step size. can you write this code without any imports. I'd like it to run by itself. I am using python playground to test the code https://programiz.pro/ide/python I don't know why the math function is not working in python playground, is there a workaround for this? prior to running the code for the approximations, I would like user prompts for each of the following: 1. an expression for the differential equation, 2. prompts for the initial conditions coordinates...x and y, 3. a prompt for the ending x-value, and 4. a prompt for the step size. I'd like to continue improving this code...namely is the differential equations expression. The code seems to work fine when the expression is in terms of x, but I have experienced an error when the expression is expressed in terms of y. I am using the differential expression 3y-1 with an initial x-value of 0 and an initial y-value of 1. When estimating the value when x = 1 using a step size of .25, I expect a value of 6.5859375. Can you help me adjust the code so that this happens. I ran the code again, and here are the error messages: Copy File "", line 62, in File "", line 43, in euler_method File "", line 16, in eval_expression 3y-1 ^ SyntaxError: invalid decimal literal ********************************************************************************************************************* import math import re def sin(x): return math.sin(x) def cos(x): return math.cos(x) def exp(x): return math.exp(x) def prepare_expression(expr): """Prepare the expression by adding explicit multiplication operators.""" # Add * for implied multiplication like 3y -> 3*y expr = re.sub(r'(\d+)([xy])', r'\1*\2', expr) # Add * for implied multiplication like yx -> y*x expr = re.sub(r'([xy])([xy])', r'\1*\2', expr) return expr def eval_expression(expr, x, y): """Evaluate the expression string with given x and y values.""" prepared_expr = prepare_expression(expr) # Create a local namespace with x, y, and math functions local_namespace = {"x": x, "y": y, "sin": sin, "cos": cos, "exp": exp} return eval(prepared_expr, {}, local_namespace) def euler_method(f_str, x0, y0, x_end, h): """ Implement Euler's method of approximation. Parameters: f_str (str): String representation of the differential equation dy/dx = f(x, y) x0 (float): Initial x-coordinate y0 (float): Initial y-coordinate x_end (float): Ending x-coordinate h (float): Step size Returns: tuple: Lists of x and y values """ # Calculate the number of steps n = int((x_end - x0) / h) # Initialize lists to store x and y values x_values = [x0] y_values = [y0] # Current values x_current = x0 y_current = y0 # Perform Euler's method for i in range(n): # Calculate slope at current point slope = eval_expression(f_str, x_current, y_current) # Calculate next values x_next = x_current + h y_next = y_current + h * slope # Store the new values x_values.append(x_next) y_values.append(y_next) # Update current values for next iteration x_current = x_next y_current = y_next return x_values, y_values # User prompts print("Welcome to the Euler's Method Approximation Program") print("Please enter the following information:") f_str = input("1. Enter the expression for the differential equation (dy/dx = f(x,y)): ") x0 = float(input("2. Enter the initial x-coordinate: ")) y0 = float(input("3. Enter the initial y-coordinate: ")) x_end = float(input("4. Enter the ending x-value: ")) h = float(input("5. Enter the step size: ")) # Run Euler's method x_values, y_values = euler_method(f_str, x0, y0, x_end, h) # Print results print("\nResults:") for x, y in zip(x_values, y_values): print(f"x = {x:.2f}, y = {y:.6f}") print(f"\nFinal approximation at x = {x_end}: y = {y_values[-1]:.7f}")