
Revisit Right Triangle Trigonometry (using a table...old school)

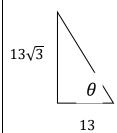
 θ is many times used as a variable to represent an angle measurement. We will be using θ to represent an unknown angle in these examples.

Practice:

* Write all three trigonometric equations for each triangle using SOH-CAH-TOA. Assume a right triangle.

1.

 $sin\theta =$

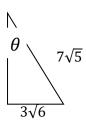

 $cos\theta =$

 $tan\theta =$

Also use the Pythagorean Theorem to verify the side lengths of this right triangle.

* Write all three trigonometric equations for each triangle using SOH-CAH-TOA. Assume all triangles are right triangles.

2.



 $sin\theta =$

 $cos\theta =$

 $tan\theta =$

3. This time write the trig. ratios (fractions) as a decimal.

 $sin\theta =$

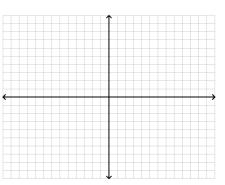
 $cos\theta =$

 $tan\theta =$

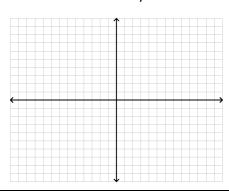
Use the trig. table on the next page to identify the angle measurement of $\boldsymbol{\theta}.$

 $\theta =$ _____

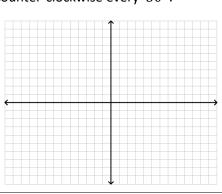
					TrigT	able					
Angle	Sine	Cosine	Tangent	Angle	Sine	Cosine	Tangent	Angle	Sine	Cosine	Tangent
1	0.0175	0.9998	0.0175	31	0.5150	0.8572	0.6009	61	0.8746	0.4848	1.804
2	0.0349	0.9994	0.0349	32	0.5299	0.8480	0.6249	62	0.8829	0.4695	1.880
3	0.0523	0.9986	0.0524	33	0.5446	0.8387	0.6494	63	0.8910	0.4540	1.9626
4	0.0698	0.9976	0.0699	34	0.5592	0.8290	0.6745	64	0.8988	0.4384	2.050
5	0.0872	0.9962	0.0875	35	0.5736	0.8192	0.7002	65	0.9063	0.4226	2.144
6	0.1045	0.9945	0.1051	36	0.5878	0.8090	0.7265	66	0.9135	0.4067	2.2460
7	0.1219	0.9925	0.1228	37	0.6018	0.7986	0.7536	67	0.9205	0.3907	2.3559
8	0.1392	0.9903	0.1405	38	0.6157	0.7880	0.7813	68	0.9272	0.3746	2.475
9	0.1564	0.9877	0.1584	39	0.6293	0.7771	0.8098	69	0.9336	0.3584	2.6051
10	0.1736	0.9848	0.1763	40	0.6428	0.7660	0.8391	70	0.9397	0.3420	2.747
11	0.1908	0.9816	0.1944	41	0.6561	0.7547	0.8693	71	0.9455	0.3256	2.9042
12	0.2079	0.9781	0.2126	42	0.6691	0.7431	0.9004	72	0.9511	0.3090	3.077
13	0.2250	0.9744	0.2309	43	0.6820	0.7314	0.9325	73	0.9563	0.2924	3.2709
14	0.2419	0.9703	0.2493	44	0.6947	0.7193	0.9657	74	0.9613	0.2756	3.4874
15	0.2588	0.9659	0.2679	45	0.7071	0.7071	1.0000	75	0.9659	0.2588	3.732
16	0.2756	0.9613	0.2867	46	0.7193	0.6947	1.0355	76	0.9703	0.2419	4.0108
17	0.2924	0.9563	0.3057	47	0.7314	0.6820	1.0724	77	0.9744	0.2250	4.3315
18	0.3090	0.9511	0.3249	48	0.7431	0.6691	1.1106	78	0.9781	0.2079	4.7046
19	0.3256	0.9455	0.3443	49	0.7547	0.6561	1.1504	79	0.9816	0.1908	5.1446
20	0.3420	0.9397	0.3640	50	0.7660	0.6428	1.1918	80	0.9848	0.1736	5.6713
21	0.3584	0.9336	0.3839	51	0.7771	0.6293	1.2349	81	0.9877	0.1564	6.3138
22	0.3746	0.9272	0.4040	52	0.7880	0.6157	1.2799	82	0.9903	0.1392	7.1154
23	0.3907	0.9205	0.4245	53	0.7986	0.6018	1.3270	83	0.9925	0.1219	8.144
24	0.4067	0.9135	0.4452	54	0.8090	0.5878	1.3764	84	0.9945	0.1045	9.5144
25	0.4226	0.9063	0.4663	55	0.8192	0.5736	1.4281	85	0.9962	0.0872	11.430
26	0.4384	0.8988	0.4877	56	0.8290	0.5592	1.4826	86	0.9976	0.0698	14.3007
27	0.4540	0.8910	0.5095	57	0.8387	0.5446	1.5399	87	0.9986	0.0523	19.0811
28	0.4695	0.8829	0.5317	58	0.8480	0.5299	1.6003	88	0.9994	0.0349	28.6363
29	0.4848	0.8746	0.5543	59	0.8572	0.5150	1.6643	89	0.9998	0.0175	57.2900
30	0.5000	0.8660	0.5774	60	0.8660	0.5000	1.7321				

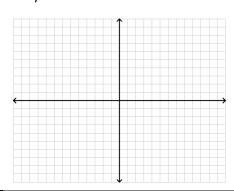

		1	TABLE	1. 1. I	MATHEN	MATICAL (CONSTANT	s					7	TABLE	1.1.	MATH	MATIC	AL CON	STANTS—Co	ntinued	ı	
n(prime) 2 3 5 7 11 13 17 19 23	1. 4142 1. 7320 2. 2360 2. 6457 3. 3166 3. 6055 4. 1231 4. 3588 4. 7958	13562 50807 67977 51311 24790 51275 05625 98943 31523	56887 49978 06459 35539 46398 61766 54067 31271	50488 72935 96964 05905 98491 92931 05498 35522 95416 40313 19221		101/8 101/8 101/8 101/8 1001/8 1001/8 10001/8 10001/8	3. 1622 2. 1544 1. 7782 1. 5848 4. 6415 2. 5118 5. 6234 3. 9810 1. 2599	77660 34690 79410 93192 88833 86431 13251 71705 21049	16837 03188 03892 46111 61277 50958 90349 53497 89487	93320 37219 28012 34853 88924 01112 08040 25077 31648		n 47 53 59 61 67 71 73 79 83 89 97	3. 8501 3. 9702 4. 0775 4. 1108 4. 2046 4. 2626 4. 2904 4. 4188 4. 4886 4. 5747	47601 91913 37443 73864 92619 79877 59441 47852 40607 36369 10978	In n 71005 55212 90571 17331 39096 04131 14839 46702 79659 73213 50338	18341 94506 12487 60596 54213 11290 14941 79234 98383	209507 444691 160504 513891 700720 294545 9729455 754722 178155 167216	n 47 53 59 61 67 71 73 79 83 89 97	1. 6720 1. 7242 1. 7708 1. 7553 1. 8260 1. 8512 1. 8633 1. 8976 1. 9190 1. 9493 1. 9867	97857 75869 52011 29835 74802 58348 22860 27091 78092	93571 60078 64214 01076 70082 71907 12045 29044 37607 64491 26624	74644 142 90456 326 41902 606 70338 85 64341 49 52860 92 59010 74 14279 94 39038 32 27847 23 48517 84
29 31 37	5. 3851 5. 5677 6. 0827	64807 64362 62530	13450 83002 29821	40313 19221 96890		31.4 31.4	1. 4422 1. 1892 1. 3160	49570 07115 74012	30740 00272 95249	83823 10667 24608		$\frac{\ln\pi}{\ln\sqrt{2\pi}}$	1. 1447 (-1) 9. 1893	29885 85332	84940 04672		43427 03296	log ₁₀ #	(-1) 4. 9714 (-1) 4. 3429	98726 44819	$\begin{array}{c} 94133 \\ 03251 \end{array}$	85435 126 82765 11
41 43 47 53 59 61 67 71 73	6. 4031 6. 5574 6. 8556 7. 2801 7. 6811 7. 8102 8. 1853 8. 4261 8. 5440	24237 38524 54600 09889 45747 49675 52771 49773 03745 94417	43284 30200 40104 28051 86860 90665 87244 17635 31753 31558	96890 86865 06523 41249 82711 81758 43941 99700 86306 11679		3-1/2 (5-1/2 (e*/4 e*/4 (- 1) 7. 0710 - 1) 5. 7735 - 1) 4. 4721 4. 8104 2. 1932 - 1) 2. 0787 - 1) 4. 5593 1. 6487	67811 02691 35954 77380 80050 95763 81277 21270	86547 89625 99957 96535 73801 50761 65996 70012	52440 76451 93928 16555 54566 90855 23677 81468		n 1 2 3 4 5 6 7 8 9	2. 3025 4. 6051 6. 9077 9. 2103 (1) 1. 1512 (1) 1. 3815 (1) 1. 6118 (1) 1. 8420 (1) 2. 0723	85092 70185 55278 40371 92546 51055 09565 68074	n ln 10 99404 98809 98213 97618 49702 79642 09583 39523 69464	13680 70520 27360 28420 74104 19788 65472	17991 35983 53974 71966 08996 10795 12594 14393 16192	n 1 2 3 4 5 6 7 8 9	3. 1415 6. 2831 9. 4247 (1) 1. 2566 (1) 1. 5707 (1) 1. 8849 (1) 2. 1991 (1) 2. 5132 (1) 2. 8274	37061 96326 55592 14857 74122	78979 17958 76937 43591 79489 15387 51285 87183 23081	32384 62 64769 25 97153 87 72953 31 66192 31 59430 77 52669 23 45907 70 39146 16
79 83 89 97 n 1 2 3	8. 8881 9. 1104 9. 4339 9. 8488 2. 7182 7. 3890 (1) 2. 0085 (1) 5. 4598	81828 56098 53692 15003	14429 05660 79610 e* 45904 93065 31876 31442	88501 88819 38113 47217 52353 02272 67740 39078	60287 30427 92853 11026	e-1/1 (e1/1	- 1) 6.0653 1.3956 - 1) 7.1653 - 1) 3.6787 - 1) 1.3533 - 2) 4.9787 - 2) 1.8315	06597 12425 13105 94411 52832 06836 63888	12633 08608 73789 -* 71442 36612 78639 87341	42360 95286 25043 32159 69189 42979 80293	55 39 34 71	n 1 2 3 4 5 6 7 8 9	3. 1415 9. 8696 (1) 3. 1006 (1) 9. 7409 (2) 3. 0601 (2) 9. 6138 (3) 3. 0202 (3) 9. 4885 (4) 2. 9809 (4) 9. 3648	92653 04401 27668 09103 96847 91935 93227 31016 09933 04747	08935 02998 40024 85281 75304 77679 07057 34462	32384 86188 20175 37236 45326 43703 20675 10676 20973	62643 34491 47632 44033 27413 02194 14206 28576 50940 71669	1 2 3 4 5 6 7 8 9	(-1) 3. 1830 (-1) 1. 0132 (-2) 3. 2251 (-2) 1. 0265 (-3) 3. 2677 (-3) 1. 0401 (-4) 3. 3109 (-4) 1. 0539 (-5) 3. 3546 (-5) 1. 0678	53443 98225 63643 61473 36801 03916 80357	83790 42337 31994 46843 05338 29585 77566 53493 20886 68615	67153 776 77144 387 89184 422 35189 152 54726 282 22960 898 76432 595 66633 172 91287 398 33662 040
5 6 7 8 9 10	(2) 1.4841 (2) 4.0342 (3) 1.0966 (3) 2.9809 (3) 8.1030 (4) 2.2026	31591 87934 33158 57987 83927 46579	02576 92735 42845 04172 57538 48067	60342 12260 85992 82747 40077 16516	11156 83872 63720 43592 09997 95790	6 (7 (8 (9 (- 3) 6. 7379 - 3) 2. 4787 - 4) 9. 1188 - 4) 3. 3546 - 4) 1. 2340 - 5) 4. 5399	46999 52176 19655 26279 98040 92976	08546 66635 54516 02511 86679 24848	70966 84230 20800 83882 54949 51535	36 44 31 13 76 59	$\pi/2$ $\pi/3$ $\pi/4$ $\pi^{1/2}$ $\pi^{1/3}$ $\pi^{1/4}$ $\pi^{2/3}$ $\pi^{2/4}$ $\pi^{3/2}$	1. 5707 (-1) 7. 8539 1. 7724 1. 4645 1. 3313 2. 1450 2. 3597 5. 5683 (1) 2. 2459 2. 5066 1. 2533 2. 2214	96326 97551 81633 53850 91887 35363 29397 30492 27996 15771 28274 14137 41469	19659 97448 90551 56152 80038 11102 41469 83170 83610 63100 31550	66192 77461 30961 60272 32630 97127 56000 68875 78452 45473 05024 02512 31235	31322 54214 56608 98167 20143 97535 77444 78474 84818 42715 15765 07883 07940	$3\pi/2$ $4\pi/3$ $\pi(2)^{1/2}$ $\pi^{-1/2}$ $\pi^{-1/3}$ $\pi^{-1/4}$ $\pi^{-3/3}$ $\pi^{-3/2}$ π^{-6} $(2\pi)^{-1/2}$ $(2(\pi)^{1/2}$	4. 7123 4. 1887 4. 4428 (-1) 5. 6418 (-1) 6. 8278 (-1) 7. 5112 (-1) 4. 6619 (-1) 4. 2377 (-1) 1. 7958 (-2) 4. 4525 (-1) 3. 9894 (-1) 7. 9788 (-1) 4. 5015	82938 95835 40632 55444 40770 72081 71221 26726 22804	38468 78639 15836 47756 55295 64942 35411 23757 25166 69229 01432 02865 78553	98576 938 09846 168 62470 155 28694 807 68146 702 48285 870 61438 198 59679 100 56168 908 06151 352 67793 999 35587 989 03477 756

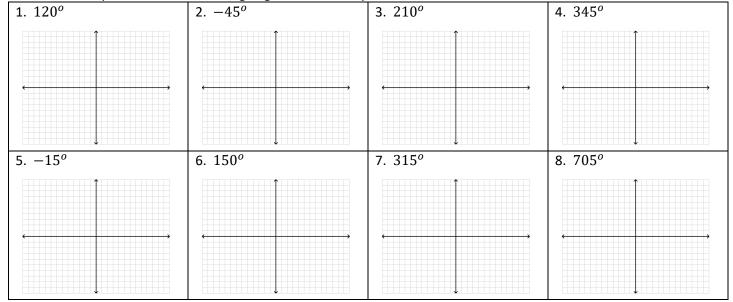
Module 11: Lessons 1 & 2 – Angles in Standard Position

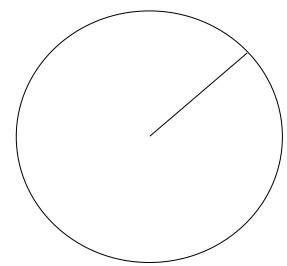

Notes:

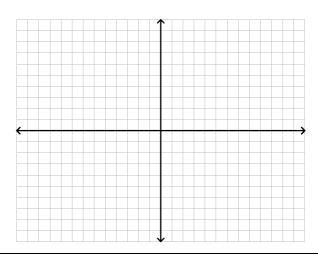
Standard Position: An **angle** is in **standard position** if its vertex is located at the origin and one ray is on the positive x-axis. The ray on the x-axis is called the <u>initial side</u> and the other ray is called the <u>terminal side</u>.

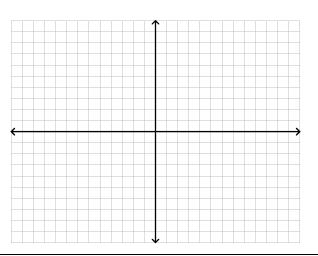

a. Practice drawing a 45^{o} angle in standard position with your teacher.

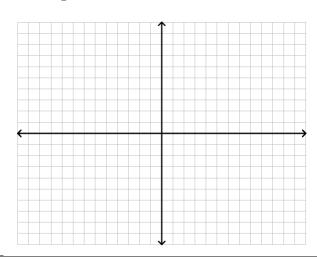

b. Label the terminal rays of each angle as you rotate counter-clockwise every 45° .

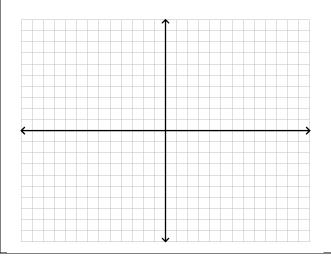

c. Label the terminal rays of each angle as you rotate counter-clockwise every 30° .


d. Practice drawing a -120^{o} angle in standard position with your teacher.

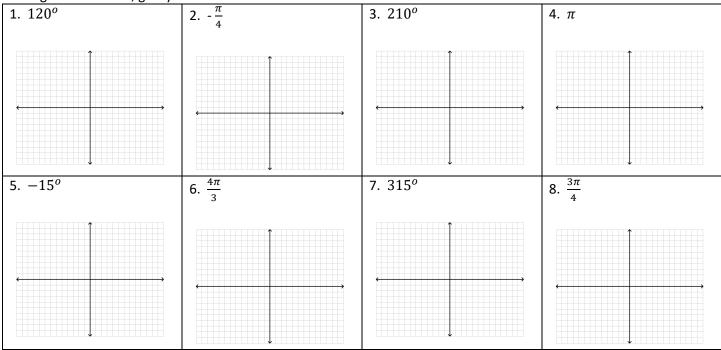

* Practice – Graph each of the following angles in standard position.

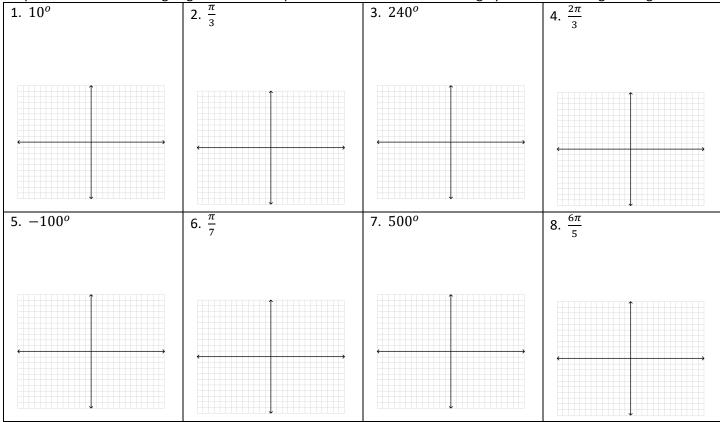

What is a radian?


Angles in Standard Position (Radians) Count by $\frac{\pi}{3}$ for one full rotation.


Count by $\frac{\pi}{4}$ for one full rotation.

Count by $\frac{\pi}{2}$ for one full rotation.

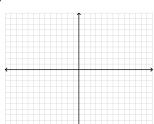

Count by $\frac{\pi}{6}$ for one full rotation.


Note	s:					
Conv	ersion Bank					
	1 inch = 2.54 cm	1 mile = 1.61	51 kilometers 2π radians = 360 degrees			
	1 barrel = 31.5 gallons	1 gallon = 3.7	1851 liters	π radians = 180 degrees		
	1 barrer – 31.3 ganons	1 gallol1 – 3.7	634 II(e) S	n radians – 100 degrees		
	nvert each of the following.		1			
1. ł	How many degrees are in 4.4 π radia	ins?	2. How many meters are in 100 yards?			
3. H	low many gallons are in a 2-liter bo	ttle of soda?	4. How many miles are in a 5K race?			
Convert each angle measurement in radians to degrees. 5. $\frac{\pi}{7}$ radians 6. $\frac{\pi}{5}$ radians 7. $\frac{\pi}{12}$ radians				π		
5	, radians	6. $\frac{\pi}{5}$ radians		7. $\frac{\pi}{12}$ radians		
8.	$.8\pi$ radians	9. 7 radians		10. 3π radians		

Coterminal Angles - angles in standard position (initial ray on the positive x-axis) that have a common terminal ray.

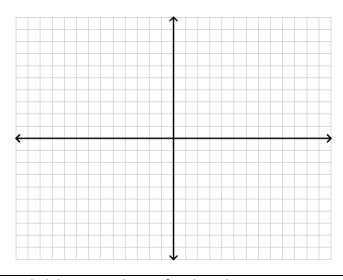
Identify at least two coterminal angles for each angle. If the stated angle is in degrees, give your answers in degrees. If the angle is in radians, give your answers in radians.

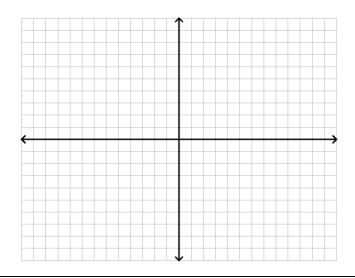
Graph each of the following angles in standard position. Be accurate even though you are estimating the angle.



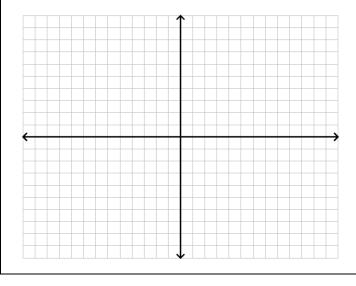
Coterminal Angles - Coterminal that have a common terminal	_	d position (angles with the initi	al side on the positive x-axis)				
9. Identify at least two coter in problems 1-8 on the previous	_	10. Identify two other angles measurements that are coterminal with a $30^{\it o}$ angle in standard position.					
Conversions (including radian Notes: Conversions – Many times when (This is an organized way of work Converting Radians to Degree	you do not know a direct conversing through conversions.)	sion from one unit to the next, you	u can use unit conversions.				
Looking at the circle and radius drawn on the right; if you were to take that radius and bend it around the circle, how many of those lengths do think would fit around the circle?							
Your Estimate Actual Value							
Therefore, there are radians per revolution or every 360 degrees. Fractions to use when converting radians and degrees							
* Convert each from radians t	o degrees or degrees to radian	IS.					
Ex. 4: 2.5π radians	Ex. 5: 60 degrees	Ex. 6: 2 radians	Ex. 7: 150°				

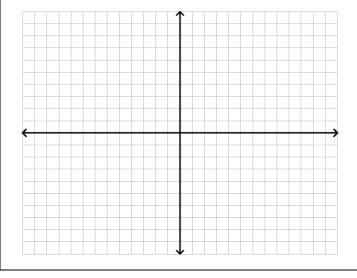
1. Graph 45^o in standard position.


2. Graph 30^{o} in standard position.


- 3. Convert 30° to radians.
- 4. Convert 45° to radians.

Notes:


a. Label the terminal rays of each angle as you rotate counter-clockwise every $\frac{\pi}{4}$ radians.


b. Label the terminal rays of each angle as you rotate counter-clockwise every $\frac{\pi}{6}$ radians.

c. Label the terminal rays of each angle as you rotate counter-clockwise every $\frac{\pi}{3}$ radians.

d. Label the terminal rays of each angle as you rotate counter-clockwise every $\frac{\pi}{8}$ radians.

Your own Unique Solutions

You are making up your own problems to solve. Therefore to get credit, your problems and results should be completely different from every other student who turns in their assignment. Be original and creative with what you do here.

1. Choose a unique and	l original angle me	easure, and draw	that angle in standard p	osition.
Your angle measure:	degrees			
	•			
2. Choose a unique and showing work or how yo		easure in RADIAN	S . Convert this radian a	ngle measure to degrees while also
Your angle measure:	radians			

Reciprocal Trigonometric Functions

Quick Review of SOH-CAH-TOA

These Trigonometric Functions also have reciprocals.

The cosecant: $\frac{1}{\sin \theta} = \csc \theta$	The secant: $\frac{1}{\cos \theta} = \sec \theta$	The cotangent: $\frac{1}{\tan \theta} = \cot \theta$
---	---	--

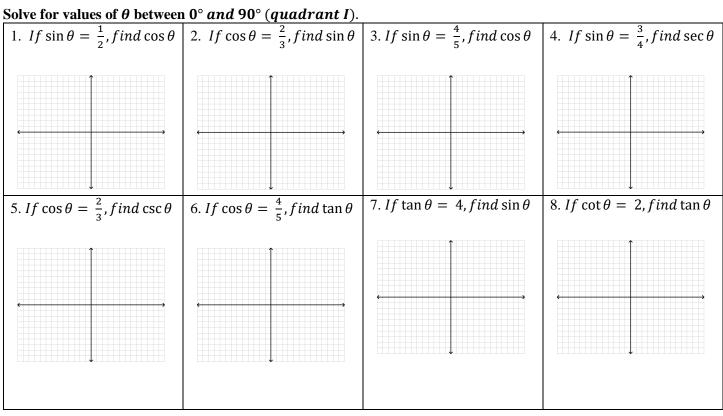
Assume each triangle	is a right triangle	. Write all three trip	gonometric equations fo	r each triangle u	using SOH-CAH-TOA.
1.			2.		
θ 21, θ 29	$\sin \theta =$	$\csc \theta =$	\	$\sin \theta =$	$\csc \theta =$
	$\cos \theta =$	$\sec \theta =$	$\int_{0}^{\pi} \int_{0}^{\sqrt{29}}$	$\cos \theta =$	$\sec \theta =$
	$\tan \theta =$	$\cot \theta =$	2	$\tan \theta =$	$\cot \theta =$
3.			4.		
θ \setminus	$\sin \theta =$	$\csc \theta =$	θ \ 17	$\sin \theta =$	$\csc \theta =$
12	$\cos \theta =$	$\sec \theta =$		$\cos \theta =$	$\sec \theta =$
5	$\tan \theta =$	$\cot \theta =$	8	$\tan \theta =$	$\cot \theta =$
					_
5.			6.		
\setminus	$\sin \theta =$	$\csc \theta =$	N	$\sin \theta =$	$\csc \theta =$
$\begin{array}{c c} \theta & \\ \hline & 2\sqrt{10} \end{array}$	$\cos \theta =$	$\sec \theta =$	$\theta \setminus 6\sqrt{2}$	$\cos \theta =$	$\sec \theta =$
\ 2√ 5	$\tan \theta =$	$\cot \theta =$	$3\sqrt{2}$	$\tan \theta =$	$\cot \theta =$
			·		

Trigonometry in the First Quadrant

0 7 7	
Reference Triangle for 30^o and 60^o .	Reference Triangle for 45^o .

Notes:

To Evaluate a trig. expression without a calculator:


- 1. Draw the angle in standard position.
- 2. Create a "Reference" Right Triangle by dropping an altitude from the terminal ray to the x-axis.
- 3. Use a Special Right Triangle and a Trigonometric Ratio to determine the value.

* Practice – Evaluate each trig. expression without a calculator.

1. $\sin 30^{\circ} =$	$2. \cos 45^o =$	3. $tan 60^{o} =$	4. $\sin 45^{o} =$
	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	
5. $tan 45^o =$	6. $\sin 60^{\circ} =$	7. $\cos 60^{\circ} =$	8. $\cos 30^{\circ} =$
	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
9. $tan 30^o =$	10. $csc 60^o =$	11. $sec 45^o =$	12. $cot 30^o =$

* Practice –Draw each reference triangle and evaluate the expression.

$\tan\frac{\pi}{4} =$	T	$\sin\frac{\pi}{4} =$
$6. \sin \frac{\pi}{3} =$	T	2. $\cos \frac{\pi}{3} =$
7. $\csc \frac{\pi}{3} =$	TT	3. $\tan \frac{\pi}{6} =$
8. $\sec \frac{\pi}{4} =$	π	4. $\cos \frac{\pi}{4} =$


Trigonometry in All Quadrants

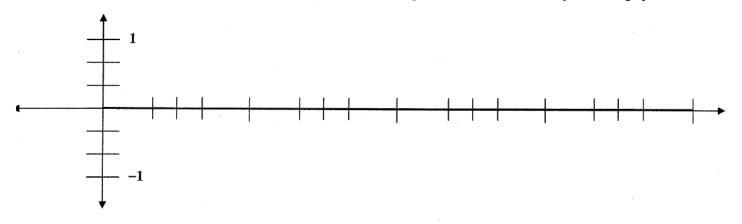
Notes:

To Evaluate a trig. expression without a calculator:

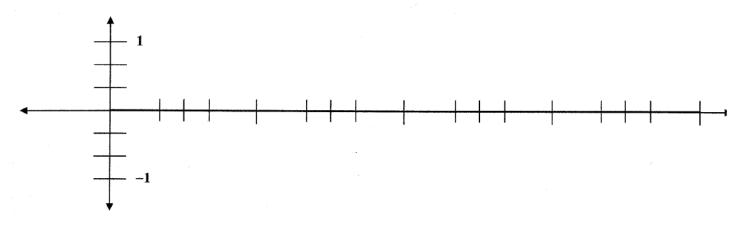
- 1. Draw the angle in standard position.
- 2. Create a "Reference" Right Triangle by dropping an altitude from the terminal ray to the x-axis.
- 3. Use a Special Right Triangle and a Trigonometric Ratio to determine the value.
- 4. Pay Close Attention to Positive and Negative Values.

* Practice – Evaluate each trig. expression without a calculator.

What do you notice about the signs of each trigonometric function in each quadrant?							
							


Determine the quadrant.

$1.\cos\theta > 0, \sin\theta > 0$	$2. \tan \theta > 0, \sin \theta < 0$	3. $\cot \theta < 0$, $\sin \theta < 0$
$4. \tan \theta < 0, \cos \theta < 0$	5. $\csc \theta < 0$, $\cos \theta < 0$	6. $\sec \theta > 0$, $\cot \theta > 0$

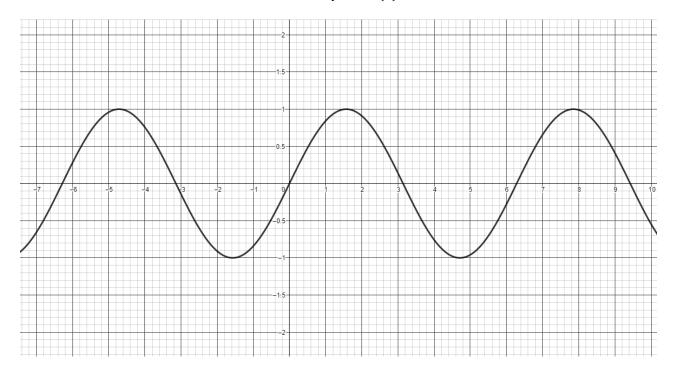

Module 11: Lessons 3 – Graphing Sine and Cosine Functions

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$y = \sin x$	0				1				0		-		-1				0
$y = \cos x$	1				0				-1				0				1

Graph: $y = \sin x$. The sine graph is smooth and rounded. Use the points from the t-table to help sketch its graph.

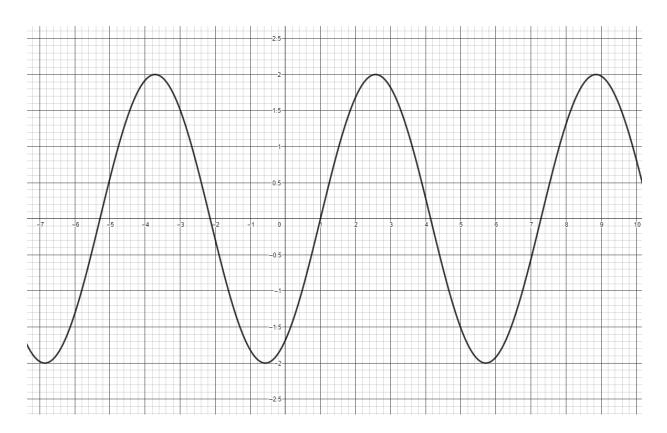
Graph: $y = \cos x$. The cosine graph is smooth and rounded. Use the points from the t-table to help sketch its graph.

Streamline the Graphing Process (One Period)


$$y = \sin(x)$$

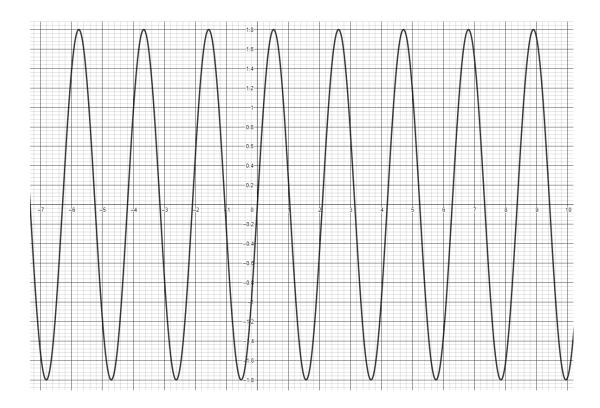
$$y = cos(x)$$

Matching Sine Wave Functions

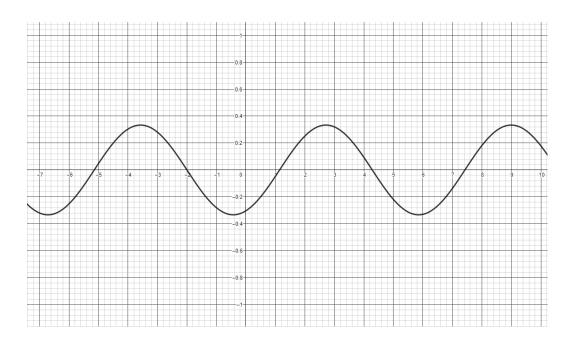

Reference: Sine Wave Parent Function

$$y = \sin(x)$$

Duplicate each wave form using the parent function $y = \sin(x)$ and your understanding of transformations. Write your function equation in the space provided.


1.

Duplicate each wave form using the parent function $y = \sin(x)$ and your understanding of transformations.


Write your function equation in the space provided.

2.

Duplicate each wave form using the parent function $y = \sin(x)$ and your understanding of transformations. Write your function equation in the space provided.

3.

Amplitude:	for the function: $y = -\sin\left(\frac{x}{3} - \pi\right) - 4$. NOTE: $-\sin\left(\frac{x}{3} - \pi\right) - 4 = -\sin\frac{1}{3}(x - 3\pi) - 4$ Domain:
Period:	
Phase Shift:	Appropriate interval to graph one complete wave:
Vertical Shift:	y-intercept:
s. Find the following information	
	for the function: $y = 3\cos(2\pi x + \frac{\pi}{3}) + 2$. NOTE: $3\cos(2\pi x + \frac{\pi}{3}) + 2 = 3\cos 2\pi(x + \frac{1}{6}) + 2$
Amplitude:	for the function: $y = 3\cos(2\pi x + \frac{\pi}{3}) + 2$. NOTE: $3\cos(2\pi x + \frac{\pi}{3}) + 2 = 3\cos 2\pi(x + \frac{1}{6}) + 2$ Domain:
	for the function: $y = 3\cos(2\pi x + \frac{\pi}{3}) + 2$. NOTE: $3\cos(2\pi x + \frac{\pi}{3}) + 2 = 3\cos 2\pi(x + \frac{1}{6}) + 2$ Domain:
Amplitude:	for the function: $y = 3\cos(2\pi x + \frac{\pi}{3}) + 2$. NOTE: $3\cos(2\pi x + \frac{\pi}{3}) + 2 = 3\cos 2\pi \left(x + \frac{1}{6}\right) + 2$ Domain: