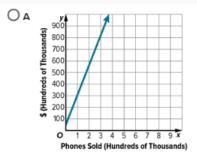
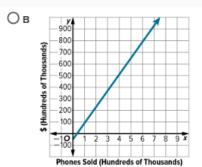
MODULE 6: INVERSES & RADICAL FUNCTIONS

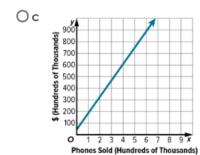
Lesson 1: Operations	on Functions (Please s	see online book for add $g(x) = x + 5$	intional examples.)	$m(m) = -2 + 4 \approx$	n(x) = Cx + 1
Given:	$J(x) = x^2 + 1$	g(x) = x + 5	h(x)=-x-3	$p(x) = x^2 + 4x$	r(x)=6x-1
Evaluate each.					
1. r(3)		2. <i>p</i> (-2)		3. h(22)	
4. <i>g</i> (-10)		5. <i>f</i> (5)		6. <i>f</i> (-5)	
		ı		1	
Perform each operat	ion and simplify the ex	opression. State any do	omain restrictions wh	en necessary.	
7. $(h+p)(x)$		8. $(g-r)(x)$		9. $(f \cdot r)(x)$	
10. $(g-h)(x)$		11. $\left(\frac{h}{g}\right)(x)$		12. $\left(\frac{r}{f}\right)(x)$	
Evaluate and Simplif	y each Composite Fund	ction.			
13. <i>g</i> (<i>f</i> (3))		14. $h(r(5))$		15. $f(p(-1))$	
//					
16. $(h \ o \ g)(-2)$		17. (r o f)(3)		18. $g(f(x))$	
19. $g(p(x))$		20. $p(g(x))$		21. $h(r(x))$	

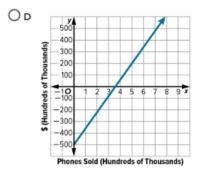
Graphs of Combined Functions

POPULATION The population in millions of india t years after 1955 can be modeled by the linear function f(t) = 15.7t + 344.2, and the population of the United States in millions t years after 1955 can be modeled by g(t) = 2.6t + 165.8. Define and graph the function that represents how much greater india's population is than that of the U.S. by year.


Notes:


Module 6: Lesson 1 – Extra Example 3

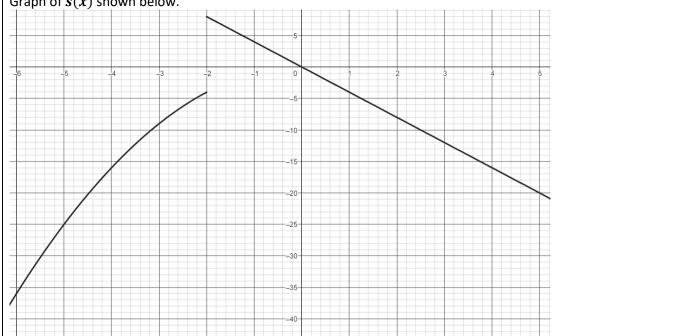

Graphs of Combined Functions


PROFIT A tech company produces phones, earning a revenue r(x) = 200x, where x is the number of phones produced and sold. The cost is c(x) = 60x + 5,000,000. Graph the function that represents the profit P(x) the company earns when x phones are sold.

Select the graph of P(x).

Notes:

Evaluating Functions
$$f(x) = 3x^2 - 7$$


$$g(x)=\sqrt{x-3}$$

$$h(x)=2x^3$$

x	r(x)
-1	1.5
0	3
1	6
2	12
3	24
1.	96

$$p(x) = \begin{cases} -x & if & -30 \le x < 1\\ 3x + 4 & if & 1 \le x \le 7\\ \frac{1}{2}x + 1 & if & x > 7 \end{cases}$$

Graph of s(x) shown below.

Determine each value	·.			
1. g(19)	2. r(2)	3. <i>s</i> (5)	4. $f(x) = 68$ Find x .	5. f (-4)
6. $h(x) = -54$ Find x .	7. p (s(-5))	8. $s(x) = -25$ Find x .	9. <i>f</i> (<i>h</i> (1))	10. $r(x) = 24$ Find x .
11. $g(x) = 52$ Find x .	12. p (-5)	13. $s(x) = 4$ Find x .	14. $h(x) = 250$ Find x .	15. $s(g(7))$
16. $g(p(8))$	17. $f(x) = 209.75$ Find x .	18. $r(g(12))$	19. Challenge $p(x) = 35$ Find x .	20. Challenge $p(x) = 4$ Find x .

Introduction to the Difference Quotient

Don't be afraid, but this is the basic concept of the Derivative which is used in Calculus to look at Rates of Change.

Warm-Up

Evaluate and Simplify each when $f(x) = x^2 - 5x$.

Evaluate and Simplify each when		T	
1. <i>f</i> (3)	2. <i>f</i> (7)	3. $f(-4)$	4. $f(1)$
F (()	C	7 6(6(2))	0 f(f(2))
5. f(x)	6. $f(a)$	7. $f(f(3))$	8. $f(f(-2))$
9. $f(a + h)$	10. $f(f^{-1}(x))$	11. $f(b+5)$	12. $f(x^2)$
			, (, ,

You should recognize this:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Similar to this what is titled the Difference Quotient

$$m = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

13. Evaluate and Simpl	ify the Difference Quotient
for $f(x) = x^2 - 5x$.	

14. Evaluate and Simplify the Difference Quotient for $g(x) = 2x^2 + 3$.

Algebraically determine the inverse of each function. Write the inverse function with correct notation.

Check for correctness either using graph	s, tables, or compositions.
1. f(x) = 2x - 4	2. $g(x) = (x-7)^2$

3.	h(x)	$=x^2$	+ 6 <i>x</i>	+ 5

4.
$$p(x) = \sqrt{2x - 3}$$

$$5. \ r(x) = \frac{1}{2}x - 3$$

$$6. \ s(x) = 4\sqrt{x-5}$$

7.
$$k(x) = x^2 - 8x + 1$$

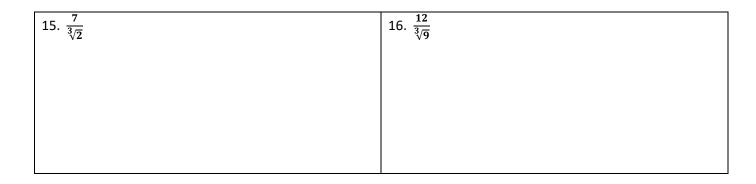
8.
$$l(x) = 7x + 6$$

9.
$$q(x) = \sqrt{2x + 9}$$

Simplify each of the following Radical Expressions. Assume all variables are positive.

Simplify Cach of the following Radical Ex	processor resource an variances and positi	
1. $\sqrt{50}$	2. $\sqrt{32x^5}$	3. $\sqrt[3]{27b^3c^4}$

* Fill a value into each radical so that the result is a whole number solution, then write the solution. A couple of problems are already filled in as examples.


4. $\sqrt[2]{121} = 11$	5. $\sqrt{\underline{}} = \underline{}$	6. ² √ =
7. $\sqrt[3]{64} = 4$ because $4 \cdot 4 \cdot 4 = 64$	8. $\sqrt[3]{ } = $	9 $\sqrt[4]{} =$

^{*} Review – Rationalize the denominator in each of the following. Again, the first is provided as an example.

Rationalizing the denominator – writing an equivalent value without the root in the denominator

10. $\frac{5}{\sqrt[2]{3}}$	11. $\frac{5}{\sqrt[2]{2}}$	12. $\frac{5}{\sqrt{7}}$
$\frac{5}{\sqrt[2]{3}} \cdot \frac{\sqrt[2]{3}}{\sqrt[2]{3}} = \frac{5\sqrt[2]{3}}{\sqrt[2]{9}} = \frac{5\sqrt[2]{3}}{3}$		

* Rationalize the denominator in each

OPERATIONS WITH RADICAL EXPRESSIONS		Example: $(8)^{\frac{2}{3}}$ means $(\sqrt[3]{8})^2$. Do you see where the 2 and the 3 from the rational exponent are in radical expression?	
* Intro/Review – Working with Rational Exponents			
A Rational Exponent is a Root and a Power Combined.		So $(8)^{\frac{2}{3}} = (\sqrt[3]{8})^2 = (2)^2 = 4$	
implify each of the follow	ving Radical Expressions.		
1. $(27)^{\frac{2}{3}}$	2. $(16)^{\frac{3}{2}}$	3. $(125)^{\frac{1}{3}}$	

Write each in radical form and then simplify. Assume all variables are positive.

4. $(27b^3c^4)^{\frac{1}{2}}$	5. $(24x^5z^2)^{\frac{1}{2}}$	6. $(24x^5z^2)^{\frac{1}{3}}$

*Simplify each based on the mathematical operation. Assume all variables are positive.

7. $(9 + 2\sqrt{5}) - (1 + \sqrt{45})$	8. $6\sqrt{3}(2\sqrt{5}+4\sqrt{6})$	9. $(7-2\sqrt{6})(7+2\sqrt{6})$
2 2 2 2 2	$\sqrt{21x^4v^8}$	12. $(4+\sqrt{3})(-2+\sqrt{2})$
10. $\sqrt[3]{3a^2b^4} \cdot (3a^2b^4)^{\frac{1}{3}} \cdot \sqrt[3]{ab}$	$11. \ \frac{\sqrt{21x^4y^8}}{(3x^2y^3)^{\frac{1}{2}}}$	12. (1 1 10)(2 1 12)
$13. \sqrt{2x^3} \cdot \sqrt{4x^3}$	14. $(4\sqrt{5}-3)-(8-\sqrt{5})$	15. $\frac{-9}{\sqrt{2}}$
		·
16. $\sqrt{56ab^2c^{10}}\cdot \left(12b^5c^7\right)^{\frac{1}{2}}$	17. $(4\sqrt{5}-3)(8-\sqrt{5})$	18. $\frac{\sqrt{4x^8}}{\sqrt{28x^2}}$
		V 201

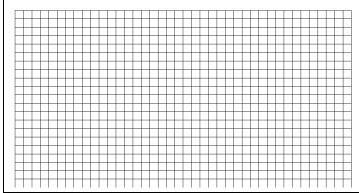
Keep in mind that a radical function is the inverse of a quadratic function.

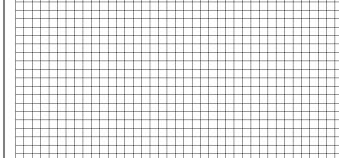
You already should somewhat have a sense of this because you have learned that <u>squaring and square rooting are inverse operations</u>...they undo one another.

Therefore when you see the graph of a radical function, it will look like half of a parabola on its side.

*State the domain of each radical function and then graph.

1.	Graph	$\nu =$	= √ <i>x</i>	-3	+4

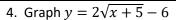

Domain: _____


Range: _____

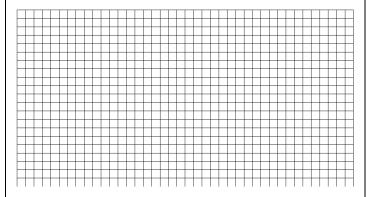
2. Graph
$$y = -\sqrt{x} + 2$$

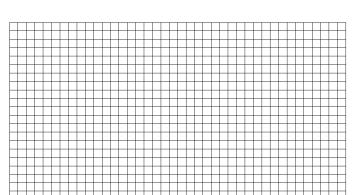
Domain: _____

Range: _____



3. Graph
$$y = 3\sqrt{x}$$

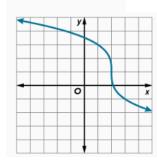

Domain: _____

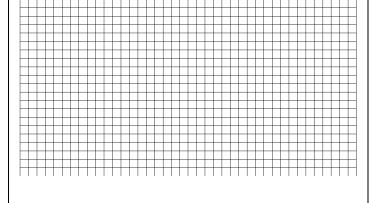

Range: _____

Domain: _____

Range: _____

5. Graph
$$y = \sqrt{-x} + 3$$


Domain: _____


Range: _____

Write a Radical Function

Write a radical function for the graph of g(x).

Module 6: Lesson 6 – Solving Radical Equations (Please see online book for additional examples.)

Notes:

To solve a radical equation we must get rid of the radicals wrapped around the variable. To undo a radical, square both sides of the equation after the radical is isolated.

The Steps: 1. Isolate a radical term, 2. Square both sides, 3. Continue until all radicals are gone, 4. Solve equation, 5. Check answers in original equation.

*Solve each radical equation.

1. $(x-3)^{\frac{1}{2}}=2$	$2. \sqrt{x+2} = 4\sqrt{x+1}$	$3. \ \sqrt{x^2 - 16} - 3 = 0$

SOLVING RADICAL EQUATIONS

* Solve each equation for the indicated unknown. Check each by graphing intersections or finding zeroes.

$4. \sqrt{x-3} + 6 = 5$	$5. \ \sqrt{9x^2 + 4} = 3x + 2$	6. $\sqrt{4-2t-t^2} = t+2$	7. $\sqrt[3]{x+1} - 3 = 4$
Notes:	<u>l</u>		

More on Domain Restrictions

Notes:

Definition: Domain - the set of all possible input values (usually x), which allows the function formula to work. (the x-values that are allowed to be used in a function)

Sometimes, rather than figuring out the x-values that are allowed, it is easier to figure out the x-values that are <u>not</u> allowed and then state that you can use all x-values except for those.

Domain restrictions can occur within even roots, like square roots, and in the denominator of fractions.

- We cannot take the square roots of negative numbers, therefore expressions within the square root must be greater than or equal to 0.
- We cannot divide by zero, therefore *expressions* in the denominator cannot be equal to zero.

*State the domain for each of the following functions.

State the demand for the following functions:			
Ex. 1: $f(x) = \sqrt{x+1}$	Ex. 2: $f(x) = \frac{x+4}{x-1}$	Ex. 3: $f(x) = x^2 - 3x + 4$	

Practice

* State the domain for each of the following functions.

$1. \ f(x) = \sqrt{5x - 13}$	$2. \ f(x) = \frac{x+1}{(3x-4)(x+2)}$	3. $f(x) = 6x^3 + 6x - 1$
$4. f(x) = \sqrt{5x+1}$	5. $f(x) = \frac{x-9}{(x-1)(2x+7)}$	6. $f(x) = x^2 - 3x + 4$