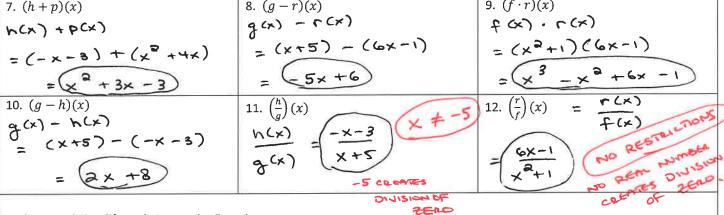
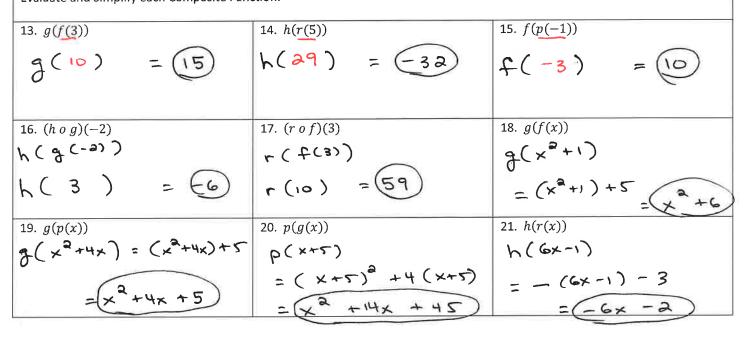
MODULE 6: INVERSES & RADICAL FUNCTIONS

Given:	$f(x) = x^2 + 1$	g(x) = x + 5	h(x) = -x - 3	$p(x)=x^2+4x$	r(x)=6x-1
Evaluate each					
1. r(3)		2. p(-2)		3. h(22)	
= 6	5(3) -1	= (-2)	+4(-2)	= -(9 2) - 3
	= (17)		= (-4)		=(-25)
4. g(-10)	3	5. f(5)		6. <i>f</i> (-5)	
= (-1	(0) + 5	= (2)	+ \	= (-5)	+/
_	= (5)		= @6		= 66
Perform each	operation and simplify the ex	xpression. State any d	omain restrictions wh	en necessary.	
7. (h+p)(x)		8. $(g-r)(x)$		9. $(f \cdot r)(x)$	
h(x) + P	(×)	g(x) - r(x)	_	もの)・し(火)	
- (-x-	a) + (x2 +4x)	= (x+5) -	(6x-1)	= (x2+1)(6x-1)
- (/		(/	3	2 . 62 = 1



Evaluate and Simplify each Composite Function.



Graphs of Combined Functions

POPULATION The population in millions of India f years after 1955 can be modeled by the linear function f(t) = 15.7t + 344.2, and the population of the United States in millions t years after 1955 can be modeled by g(t) = 2.6t + 165.8. Define and graph the function that represents how much greater India's population is than that of the U.S. by year.

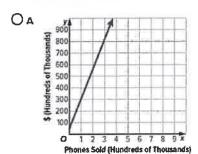
Notes: IN CLASS DISCUSSION

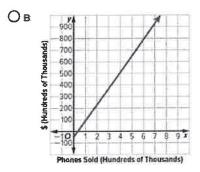
Module 6: Lesson 1 - Extra Example 3

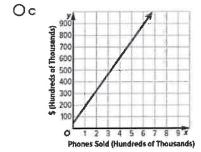
Graphs of Combined Functions

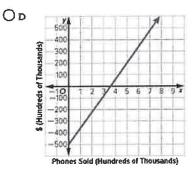
PROFIT A tech company produces phones, earning a revenue r(x) = 200x, where x is the number of phones produced and sold. The cost is c(x) = 60x + 5,000,000. Graph the function that represents the profit P(x) the company earns when x phones are sold.

Select the graph of P(x).









Notes: IN CLASS DISCUSSION

Evaluating Functions
$$f(x) = 3x^2 - 7$$

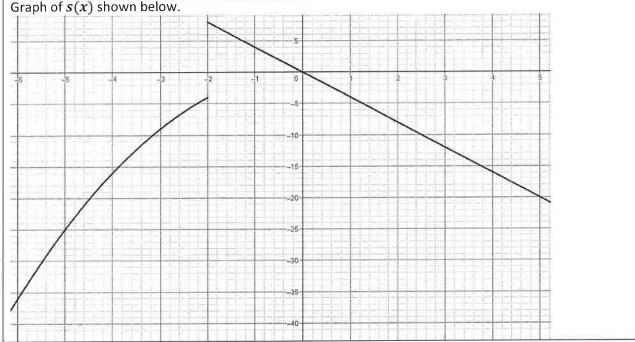
$$g(x) = \sqrt{x-3}$$

$$h(x)=2x^3$$

x	r(x)
-1	1.5
0	3
1	6
2	12
3	24
4	96

$$p(x) = \begin{cases} -x & \text{if } -30 \le x < 1\\ 3x + 4 & \text{if } 1 \le x \le 7\\ \frac{1}{2}x + 1 & \text{if } x > 7 \end{cases}$$

Graph of s(x) shown below.



Determine each value.				
1. <i>g</i> (19)	2. r (2)	3. <i>s</i> (5)	4. $f(x) = 68$	5. $f(-4)$
			Find x.	
			3x2-7=68	
			3x2 = 75	
=(4)	= (12)	= (-90)	/	=(41)
			x2 = 25 (x = ±5))
6. $h(x) = -54$	7. $p(s(-5))$	8. $s(x) = -25$	9. $f(h(1))$	10. $r(x) = 24$
Find x .		Find x .		Find x .
2×3 = -54				
	=(a5)	(x = -5)	(5)	(×=3)
$x^3 = -27 (x = -3)$) -0		•	
11. 1(h) A 68	12. p (− 5)	13. /(x)///16 8	14. (KX) 1=168	15. $s(g(7))$
Find x. $g(x) = 52$		Find x. 5(x) =4	Find x. h (x) = 250	-8
0				O
(x=2707)	(5)	(x=1)	(x=5)	(€)
16. $g(p(8))$	17. $f(x) = 68^{1}$	18. $r(g(12))$	19. 100 768	20. 10000000000
	Find x. 209.75		Find x. P (x) = 35	Find x. $p(x) = 4$
			extruence	CHALLNOE
Ja or 1.414)	+05			0.,
	(x = -0.3)	24		

有名星星星柳柳

Introduction to the Difference Quotient

Don't be afraid, but this is the basic concept of the Derivative which is used in Calculus to look at Rates of Change.

Warm-Up

Evaluate and Simplify each when $f(x) = x^2 - 5x$.

Evaluate and onlineing coon inner) (),		
1. f(3)	2. f(7)	3. <i>f</i> (-4)	4. <i>f</i> (1)
$(3)^{2} - 5(3)$	(7) -5(7)	(-4) = -5(-4)	(1) -5(1)
	·		
- 6	= (4)	36	-4
5. f(x)	6. f(a)	7. $f(f(3))$	8. $f(f(-2))$
(x)2 ~ 5(x)	(a) = -5(a)	$(3)^2 - 5(3) = -6$	(-2) -5(-2) = 14
		(-6) -5(-6)	(14) = -5(14)
=(x 2 - 5x)	(a ² - 5a)	=(6)	(126)
9. $f(a+h)$	10. $f(f^{-1}(x))$	11. $f(b+5)$	12. $f(x^2)$
(a+h)2-5(a+h)		(p+2)2 -2(p+e)	$(x^2)^2 - 5(x^2)$
a2+2ah+h2-5a-5h		P=+10p +32 -2p -32	
THERE MRE NO LIKE	\otimes	(b2 + 5b)	$\left(x^{4}-5x^{2}\right)$
FERMS OF EMBT			

You should recognize this:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Similar to this what is titled the Difference Quotient

$$m = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

13. Evaluate and Simplify the Difference Quotient for
$$f(x) = x^2 - 5x$$
.

$$f(a) = a^3 - 5a$$

$$f(a+h) = (a+h)^3 - 5(a+h)$$

$$= a^3 + 2ah + h^3 - 5a - 5h$$

$$f(a+h) - f(a)$$

$$= (a^2 + 2ah + h^3 - 5a - 5h) - (a^2 - 5a)$$

$$= (a^3 + 2ah + h^3 - 5a - 5h) - (a^2 - 5a)$$

$$= (a^3 + 2ah + h^3 - 5a - 5h) - (a^2 - 5a)$$

$$= (a^3 + 2ah + h^3 - 5a - 5h) - (a^2 - 5a)$$

$$= (a^3 + 2ah + ah + ah^3 + ah) - (a^3 + ah)$$

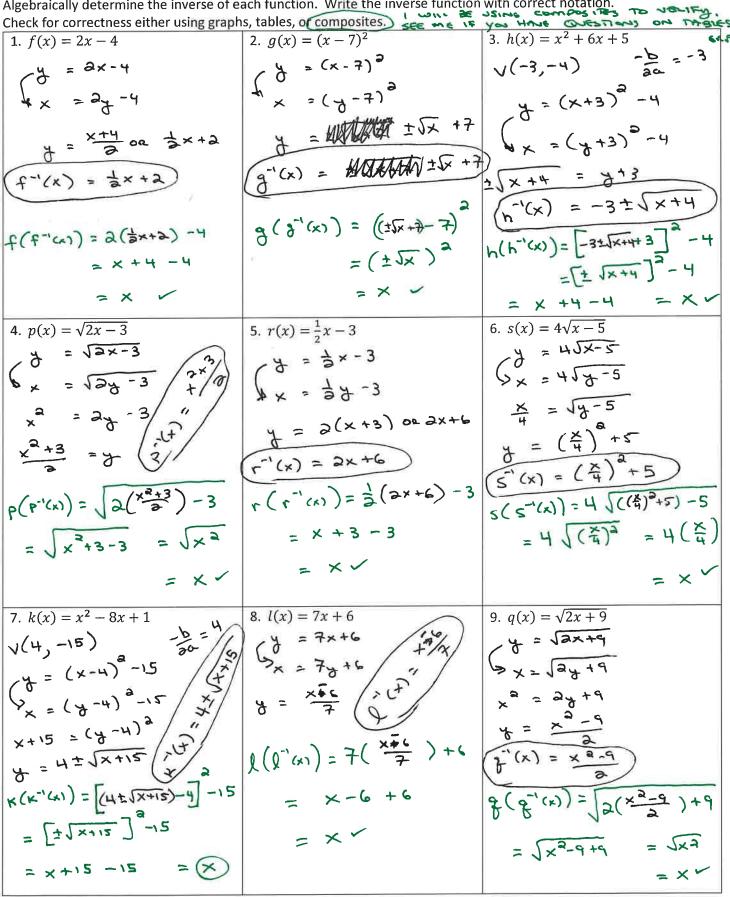
$$= (a^3 + 2ah + ah) - ah$$

$$= (a^3 + 2ah + ah) - ah$$

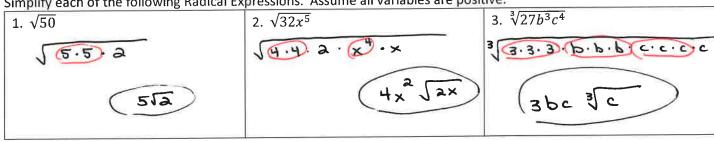
$$= (a^3 + 2ah + ah) - ah$$

$$= (a^3 + 2ah) + ah$$

Algebraically determine the inverse of each function. Write the inverse function with correct notation.



Simplify each of the following Radical Expressions. Assume all variables are positive.



* Fill a value into each radical so that the result is a whole number solution, then write the solution. A couple of problems are already filled in as examples.

$4. \sqrt[2]{121} = 11$	5. V =	6. ² √ =
7. $\sqrt[3]{64} = 4$ because $4 \cdot 4 \cdot 4 = 64$	8. $\sqrt[3]{ } = $	9 1 =

* Review - Rationalize the denominator in each of the following. Again, the first is provided as an example.

Rationalizing the denominator – writing an equivalent value without the root in the denominator

10.
$$\frac{5}{\sqrt[2]{3}}$$

$$\frac{5}{\sqrt[2]{3}} \cdot \frac{\sqrt[2]{3}}{\sqrt[2]{3}} = \frac{5\sqrt[2]{3}}{\sqrt[2]{9}} = \frac{5\sqrt[2]{3}}{3}$$

11.
$$\frac{5}{\sqrt{2}}$$

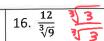
* Rationalize the denominator in each.

$$13 \cdot \frac{8}{\sqrt[3]{2}}$$

$$\frac{8}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{4}}{\sqrt[3]{4}} = \frac{8\sqrt[3]{4}}{\sqrt[3]{8}} = \frac{8\sqrt[3]{4}}{2} = 4\sqrt[3]{4}$$

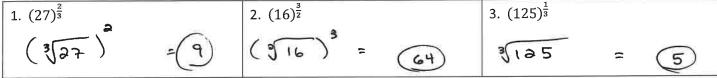
14. Written Response: Why did the example at the left multiply by one in the form of $\frac{\sqrt[3]{4}}{\sqrt[3]{4}}$?

15.
$$\frac{7}{\sqrt[3]{2}}$$

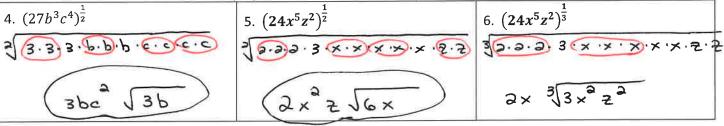


Example: $(8)^{\frac{2}{3}}$ means $(\sqrt[3]{8})^2$. Do you see where the 2 and **OPERATIONS WITH RADICAL EXPRESSIONS** the 3 from the rational exponent are in radical expression? * Intro/Review - Working with Rational Exponents So $(8)^{\frac{2}{3}} = (\sqrt[3]{8})^2 = (2)^2 = 4$ A Rational Exponent is a Root and a Power Combined.

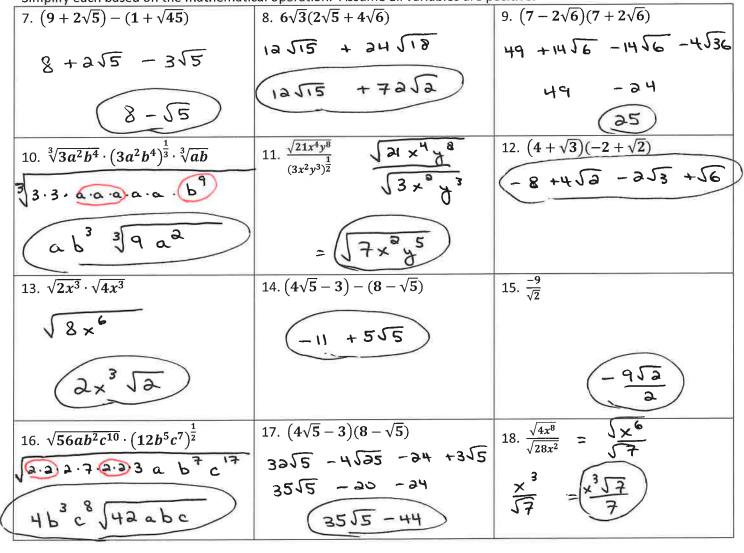
Simplify each of the following Radical Expressions.



Write each in radical form and then simplify. Assume all variables are positive.



*Simplify each based on the mathematical operation. Assume all variables are positive.

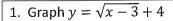


Keep in mind that a radical function is the inverse of a quadratic function.

You already should somewhat have a sense of this because you have learned that squaring and square rooting are inverse operations...they undo one another.

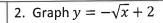
Therefore when you see the graph of a radical function, it will look like half of a parabola on its side.

*State the domain of each radical function and then graph.



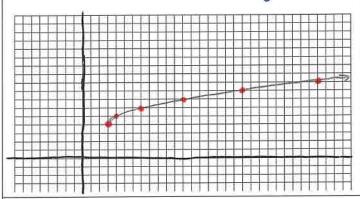
Domain: $\times \geq 3$

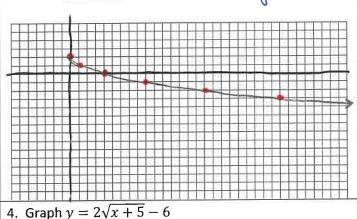
Range: 4 3 4



Domain: X Z D

Range: $\frac{1}{4} \leq \frac{2}{2}$

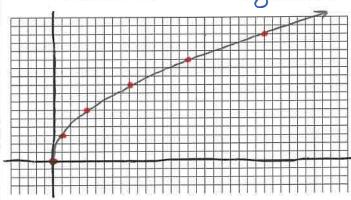


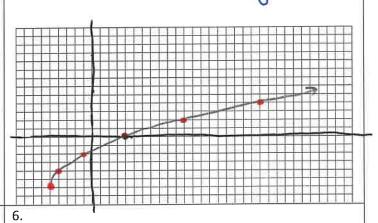


3. Graph
$$y = 3\sqrt{x}$$

Domain: 🗶 ≥ 🖸

Range: 4 = 0

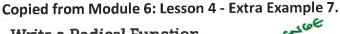




5. Graph
$$y = \sqrt{-x} + 3$$

Domain: ★ ≤ ○

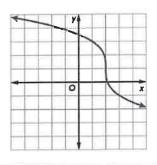
Range: $y \ge 3$

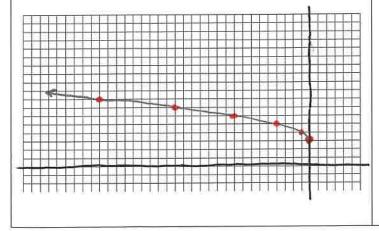


Write a Radical Function

Write a radical function for the graph of g(x).

$$g(x) = \sqrt[3]{x - \boxed{ }} + \boxed{ }$$





Notes:

To solve a radical equation we must get rid of the radicals wrapped around the variable.

To undo a radical, square both sides of the equation after the radical is isolated.

The Steps: 1. Isolate a radical term, 2. Square both sides, 3. Continue until all radicals are gone, 4. Solve equation, 5. Check answers in original equation,

*Solve each radical equation.

1.
$$(x-3)^{\frac{1}{2}} = 2$$

 $\sqrt{x-3} = 2$
 $x+3 = 4$
 $x=7$

2. $\sqrt{x+2} = 4\sqrt{x+1}$
 $x+4 = 16(x+1)$
 $x+4 = 16(x+1)$
 $x+4 = 16(x+1)$
 $x=7$

3. $\sqrt{x^2-16}-3=0$
 $x=3$
 $x=3$
 $x=16$
 $x=3$
 $x=3$

SOLVING RADICAL EQUATIONS

* Solve each equation for the indicated unknown. Check each by graphing intersections or finding zeroes.

$4.\sqrt{x-3} + 6 = 5$	$5. \ \sqrt{9x^2 + 4} = 3x + 2$	$6. \ \sqrt{4-2t-t^2} = t+2$	7. $\sqrt[3]{x+1} - 3 = 4$
1x-3 = -1		H-2+-+= (++2)	3×+1 =7
NO SOLUTION	9x2+4=9x2+12x+4	4-at-t = t +10.1	X+1 = 343 X = 342
	APOPALLIADA APOPALLIADA	0 = 2t + 6t t = 0, -3	X = 340
	X		
Notes:			

More on Domain Restrictions

Notes:

Definition:

Domain - the set of all possible input values (usually x), which allows the function formula to work. (the x-values that are allowed to be used in a function)

Sometimes, rather than figuring out the x-values that are allowed, it is easier to figure out the x-values that are <u>not</u> allowed and then state that you can use all x-values except for those.

Domain restrictions can occur within even roots, like square roots, and in the denominator of fractions.

- We cannot take the square roots of negative numbers, therefore expressions within the square root must be greater than or equal to 0.
- We cannot divide by zero, therefore expressions in the denominator cannot be equal to zero.

*State the domain for each of the following functions.

Ex. 1: $f(x) = \sqrt{x+1}$	Ex. 2: $f(x) = \frac{x+4}{x-1}$	Ex. 3: $f(x) = x^2 - 3x + 4$
Domain: X Z -1	Dumain: R, x = 1	Domain: IR

<u>Practice</u>

* State the domain for each of the following functions.

1. $f(x) = \sqrt{5x - 13}$	2. $f(x) = \frac{x+1}{(3x-4)(x+2)}$	$3. \ f(x) = 6x^3 + 6x - 1$
5×-13 ≥0		
Dama, N: X = \frac{13}{5}	Domain: R, x = 4 ,-2	Domain: R
$4. f(x) = \sqrt{5x+1}$	5. $f(x) = \frac{x-9}{(x-1)(2x+7)}$	$6. \ f(x) = x^2 - 3x + 4$
Doma.n: X = -1	Domario: 12, x \$ 1, - }	Donain: R