MODULES 7 & 8 - EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- 1. No Calculators
- 2. Fill in values that you already know (No guessing)
- 3. Figure out more values by multiplying dividing or looking for patterns.
- 4. Answer the questions at the bottom of this paper.

Write the answers to each of the following.		
You should not need to		
use a calculator for this.		
12 =		
2 ² = 4		
32 = 9		
4 ² = \6		
$5^2 = 25$		
$6^2 = 36$		
7 ² = 49		
82 = 64		
9 ² = 81		
102 = 100		
$11^2 = 121$		

 $12^2 = 144$

table by following the pattern.	
2 ⁵	32
24	16
23	8
22	4
21	2
20	١
2-1	12
2-2	-12 -17
2-3	8
2-4	16
2-5	1 32

Fill in the missing cells of the

table by following the pattern.	
$\left(\frac{1}{5}\right)^5$ $\left(\frac{1}{5}\right)^4$	3125
(2)4	$\frac{1}{625}$
$\left(\frac{1}{5}\right)^3$	135
$\frac{\left(\frac{1}{5}\right)^3}{\left(\frac{1}{5}\right)^2}$	1 5
$\left(\frac{1}{5}\right)^1$	$\frac{1}{5}$
$\left(\frac{1}{5}\right)^0$	1
$\left(\frac{1}{5}\right)^{-1}$	5
$\left(\frac{1}{5}\right)^{-2}$	25
$\left(\frac{1}{5}\right)^{-3}$	125
(\$)-4	G25
(2)-2	3125

Fill in the missing cells of the

Notice that when exponents are zero or negative, the original meaning of an exponent has to change. For example, $2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$, but what about 2^0 or 2^{-3} . Explain why 2^0 or 2^{-3} have the values described in your work above.

Evaluate each expression given in exponential form.

Ex: $5^{-2} = \frac{1}{25}$	1. 30 =	2. 5 ³ = \ \ 3 .5	3. $3^{-2} = \frac{1}{9}$
4. $2^{-3} =$	5. $5^{-2} =$	6. 3 ⁴ =	7. $4^{-3} =$
8	25	81	64

*Solve each using Guess & Check. Round answers to the nearest hundredth.

$8. \ 10^x = 14517$	9. $4 \cdot 2^x = 1000$	10. $2^x = 8^{2x+1}$
×≈ 4.16	x ≈ ֏ . ዓ구	x =6

Simplify each expression. Leave answers with only positive exponents.

Simplify each expression	i. Leave answers with or	ny positive exponents.		
11. 3 ⁸ · 3 ⁴	12. $(2^5)^3$	13. 5 ⁻²	14. $\frac{4^7}{4^2}$	15. 2 ⁻⁵
3'2	2 15	25	45	32
16. $5^{-3} \cdot 5^{5}$	17. (3 ²) ⁴	18. $\frac{6^{11}}{6^{13}}$	19. 2 ⁻⁸ · 2 ⁴	20. $\frac{5^{10}}{5^7}$
5	3	62	7	5 ³
21. 4 ² · 2 ³	22. $\frac{27^2}{3^5}$	23. 5 ¹³ · 5 ¹¹	24. (5 ³) ¹³	25. $\frac{5^3}{5^{13}}$
2 ⁷	3	5 a4	5 ³⁹	5 10
26. 5 ⁻³	27. $(5)^5 \cdot (25)^2$	$28. \frac{(25)^2}{(5)^5}$	29. $\frac{(5)^5}{(25)^2}$	$30. \ \frac{(25)^5}{(5)^2}$
125	59	5	5	2 8
31. $7^2 \cdot 7^7$	32. $\frac{7^2}{7^7}$	33. $7^7 \div 7^2$	34. $(7^2)^7$	35. $(7^7)^2$
79	75	75	7"	7
36. $(7^2)^{\frac{1}{2}}$	$37. \ 9^{\sqrt{3}} \cdot 27^{\sqrt{3}}$ $3 \cdot 3$ $3 \cdot 3$			
7	3 . 3	553		

Module 7: Lesson 2 Solving Exponential Equations

Solve each equation using a "like base" strategy. Check your solutions.

Solve each equation using a like base .		10 C-1 27+4 4X
38. $3^x = 3^8$	39. $2^x = 8^{2x+1}$	40. Solve $2^{x+4} = 4^x$
	~3	
x = 8	×=	×=4
/ /	/ S	
41. Solve $3^{x+1} = 3^{2x}$	42. Solve $12^x = 12^5$	43. Challenge: $3^{x+1} = 5^x$
42. 301/03		
	i i	
X = \	x = 5	
· · · · · · · · · · · · · · · · · · ·		

44. Copied from Module 7: Lesson 2 - Extra Example 1

Solve Exponential Equations Algebraically

Solve
$$2^{9x} = 64^{3x+6}$$
.

$$x = \boxed{-4}$$

Scientific Notation

Here are some examples of numbers in scientific notation.

Approximate distance from Earth to the Sun: $1.5 \cdot 10^8 \text{ km}$

Length of a red blood cell: $8.0 \cdot 10^{-6}$ meters

Approximate World Population: 7.2 · 109 people

Here is what certain values would look like w/o scientific notation.

Mass of Earth: 13 170 000 000 000 000 000 000 000 lbs.

Approximate distance from Earth to the Sun: 93,000,000 miles

Mass of an electron:

0.000000000000000000000000000000000091093822 kg

When comparing the two sets of examples above, why do you think Scientific Notation is used outside of a school building?

Review properties of exponents if needed.

To write a number in Scientific Notation:

Scientific Notation shows the product of two numbers.

The first number in scientific notation must be between 1 and 10.

The second number is the appropriate power of 10 that produces an equivalent value to the number not in scientific notation.

Write out each number shown in scientific notation.

1. Approximate distance from Earth to the Sun: $1.5\cdot 10^8~\text{km}$

2. Length of a red blood cell: $8.0 \cdot 10^{-6}$ meters

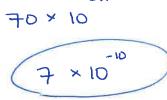
3. Approximate World Population: $7.2 \cdot 10^9$ people

Write each of the following values in scientific notation.

4. Mass of Earth: 13 170 000 000 000 000 000 000 000 lbs.

5. Approximate distance from Earth to the Sun: 93,000,000 miles

6. Mass of an electron:


*Evaluate each without a calculator, and leave your answer in scientific notation. Check answers using your calculators.

7.
$$(3.2 \cdot 10^8)(2 \cdot 10^5)$$

8.
$$(6 \cdot 10^8)(3 \cdot 10^{-2})$$

9.
$$(14 \cdot 10^{-6})(5 \cdot 10^{-5})$$

10.
$$\frac{(9\cdot10^7)}{(3\cdot10^4)}$$

Scientific Notation

Here are some examples of numbers in scientific notation.

Approximate distance from Earth to the Sun: $1.5 \cdot 10^8 \ \text{km}$

Length of a red blood cell: $8.0 \cdot 10^{-6}$ meters

Approximate World Population: 7.2 · 109 people

Here is what certain values would look like w/o scientific notation.

Mass of Earth: 13 170 000 000 000 000 000 000 000 lbs.

Approximate distance from Earth to the Sun: 93,000,000 miles

Mass of an electron:

When comparing the two sets of examples above, why do you think Scientific Notation is used outside of a school building?

Review properties of exponents if needed.

To write a number in Scientific Notation:

Scientific Notation shows the product of two numbers.

The first number in scientific notation must be between 1 and 10.

The second number is the appropriate power of 10 that produces an equivalent value to the number not in scientific notation.

Write out each number shown in scientific notation.

1. Approximate distance from Earth to the Sun: $1.5 \cdot 10^8 \ \text{km}$

2. Length of a red blood cell: $8.0 \cdot 10^{-6}$ meters

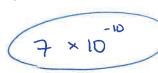
3. Approximate World Population: $7.2 \cdot 10^9$ people

Write each of the following values in scientific notation.

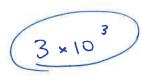
4. Mass of Earth: 13 170 000 000 000 000 000 000 000 lbs.

5. Approximate distance from Earth to the Sun: 93,000,000 miles

6. Mass of an electron:


*Evaluate each without a calculator, and leave your answer in scientific notation. Check answers using your calculators.

7.
$$(3.2 \cdot 10^8)(2 \cdot 10^5)$$


8.
$$(6 \cdot 10^8)(3 \cdot 10^{-2})$$

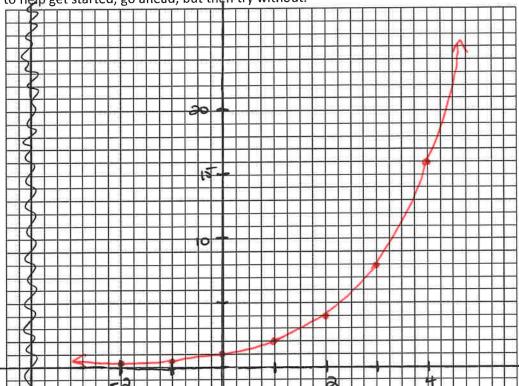
9.
$$(14 \cdot 10^{-6})(5 \cdot 10^{-5})$$

10.
$$\frac{(9.10^7)}{(3.10^4)}$$

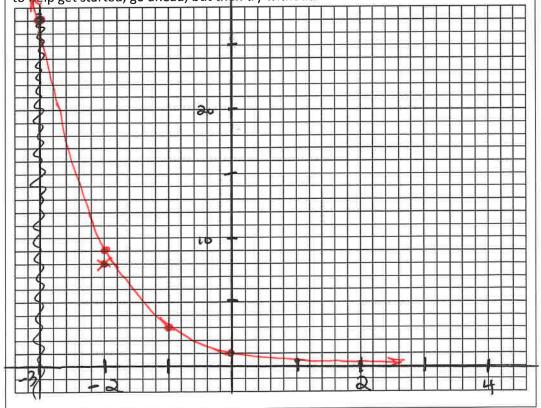
1. a. Fill in the table for the following exponential function. Try not to use your calculator and instead of decimals, use fractions when necessary. If you need your calculator to get started, go ahead, but then try without.

$$y = 2^x$$

x	у
-2	1/4
-1	1/2
0	1
1	2
2	4
3	8
4	16


2. a. Fill in the table for the following exponential function. Try not to use your calculator and instead of decimals, use fractions when necessary. If you need your calculator to get started, go ahead, but then try without.

(Notice the negative exponent here.)


$$y = 3^{-x}$$

	- 1
x	у
-2	9
-1	3
0	1
1	1/3
2	1/9
3	1/27
4	1/81

1. b. Set up a scale for your graph by using the information that you filled in for the table, and then graph the function $y=2^x$. Again, if you need to use your calculator to help get started, go ahead, but then try without.

2. b. Set up a scale for your graph by using the information that you filled in for the table, and then graph the function $y = 3^{-x}$. Again, if you need to use your calculator to help get started, go ahead, but then try without.

Transformation Review

1. Graph the following exponential function.

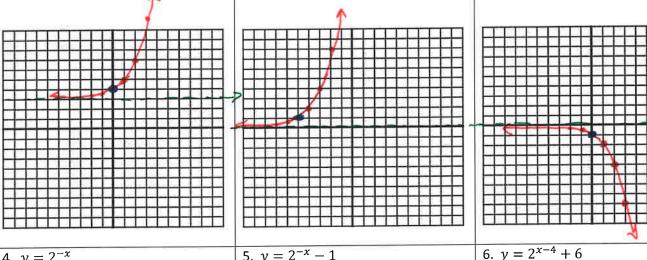
$$y = 2^x$$

X	У
-2	44
-1	1/2
0	١
1	2
2	4
3	8

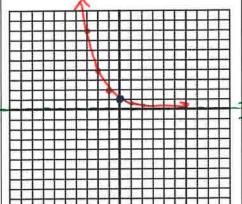
- 2. Of the six points that you just graphed, which one do you think is the "memorable point" of the bunch? Why?

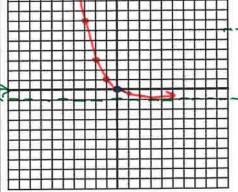
ASYMPTOTE

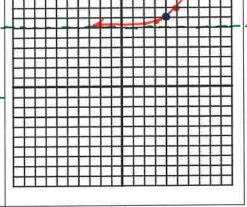
3. Look along the x-axis. Do you think the curve that you graphed will ever touch the x-axis? Why or why not?


Definition: Asymptote - a reference line that a curve will approach, but never quite reach

* Use what you know about transformations, the "memorable point", and the asymptote to graph each. If you need to use your graphing calculator for the first two questions, please do so. Your goal is to not have to use your calculators.







4.
$$y = 2^{-x}$$

5.
$$y = 2^{-x} - 1$$

Example: If I wished to move this function two up, I would write this function as y = f(x) + 2.

Example: If I wished to move this function seven to the left, I would write this function y = f(x + 7).

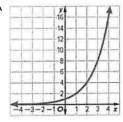
8. Move the function two to the right and three down.

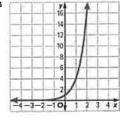
Write the adjusted function for each of the following:

7. Reflect the function over the x-axis.

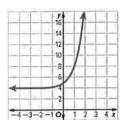
10. Reflect the function over both axes and move the 9. Reflect the function across the y-axis.

function up four.

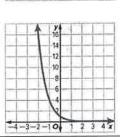

y = f(x-2) - 3

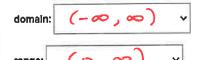

Copied from Module 7:1 Extra Example 1.

Graph Exponential Growth Functions

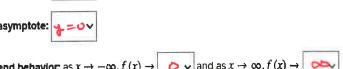

Part A Select the graph of $f(x) = 4^x$

Consider $f(x) = 4^x$.




Оc

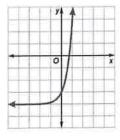
ОÞ


Find the domain, range, y-intercept, asymptote, and end behavior.

y-intercept: (o,)

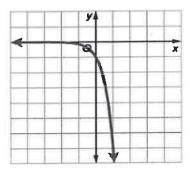
asymptote: 🕌 = 🔾 🔻

end behavior: as $x \to -\infty$, $f(x) \to \bigcirc \lor$ and as $x \to \infty$, $f(x) \to \bigcirc \lor$



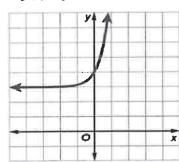
Copied from Module 7:1 Extra Example 3.

Analyze Graphs of Exponential Functions


identify the value of k and write a function for each graph as it relates to $f(x)=7^{\rm t}$.

$$a. g(x) = f(x) + k$$

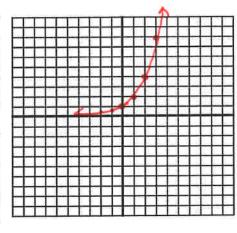
$$g(x) = 7^{\times} - 4$$


b. $h(x) = k \cdot f(x)$

k = -

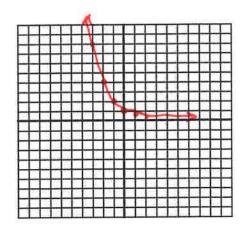
$$h(x) = \boxed{-1 \cdot 7^{\times}}$$

c. j(x) = f(x) + k


$$j(x) = 7^{\times} + 3$$

Module 7: Lesson 2 Solving Exponential Equations (Applications of Exponents and Logarithms)

Review – Graph the following exponential functions.


1.
$$y = 2^x$$

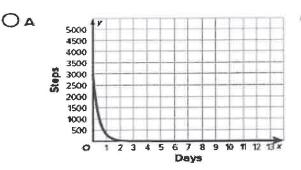
1. y	= Z"
x	у
-2	-15
-1	1/2
0	1
1	2
2	4
3	8

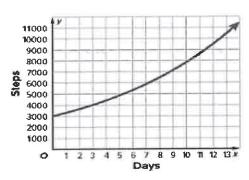
2.
$$y = 2^{-x}$$

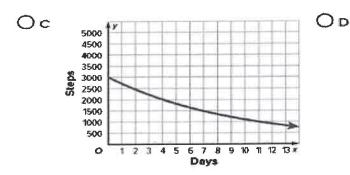
x	у
-3	8
-2	4
-1	2
0	١
1	1/2
2	1/4

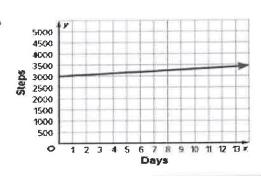

As you look at both graphs, what point is consistent in both situations? Why is this?

Again as you look at both graphs, both seem to be getting closer and closer to a reference line called an asymptote. How would you describe the location of this reference line on the graphs above?


You should see a connection with the two graphs/equations and what you know about transformations. Write a short explanation regarding this connection.


When looking at the equation for an exponential function, how can you tell that it is describing decay?


Copied from Module 7:1 Extra Example 4.



B

Use Exponential Growth Functions

0

FITNESS Addison is participating in a fitness challenge. Each

day, for 2 weeks, she wants to increase the number of steps she takes by 10%. If Addison takes 3000 steps the first day, use a graphing calculator to graph and interpret a function representing this situation.

Part B

Estimate the number of steps she will take on the last day of the challenge.

Look these up:

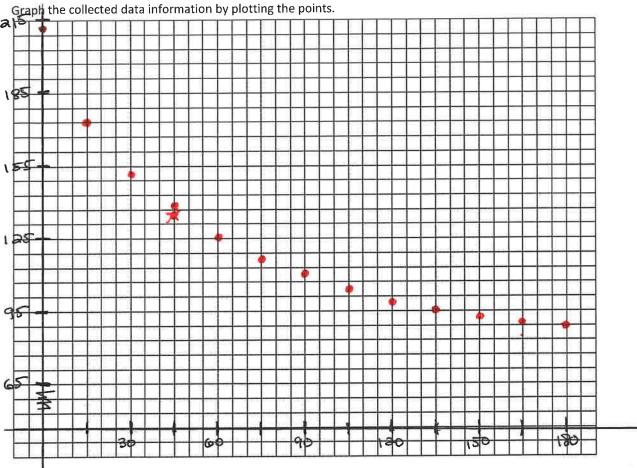
Boiling Point of H₂0

Freezing Point of H₂0

Celsius or 212 Fahrenheit

Celsius or 32 Fahrenheit

Activity: Observing Exponential Decay


Objectives:

- a. Observe exponential decay in real-time
- b. Make predictions about decay over time
- c. Identify that functions can be represented as tables, graphs, and equations
- d. Calculate a regression function with given data
- e. Observe and predict idea of a limit

Module 7: Lesson 5 - Modelling Data

Fill in the table	e below b	ased on t	the meas	urement	s as the b	oiling wa	ater cools	. Room	Temper	ature: _	45		
Time (t)	0	15	30	45	60	75	90	105	120	135	150	165	180
Temp. (T)	212	173	129	138	125.5	117	111	401	99.5	95.5	93	90.5	89

How would you describe the shape or behavior of this graph?

EXPONENTIAL DECAM

We have discussed a reference line called an asymptote. Your graph is approaching an invisible horizontal line. How would you describe the location of this reference line?

HOLIZON THE FOR 9m year

https://www.soutube.com/watch?ccms/kms/WssA

On your calculators, use STAT -> EDIT to input the data from the table into lists L1 and L2.

Talk with your teacher on how to adjust your data for the horizontal asymptote.

Time (t)	0	15	30	45	60	75	90	105	120	135	150	165	180
Temp. (<i>T</i>)													
Fool the Calculator	137	98	77	63	50.5	42	36	29	24.5	20.5	18	15.5	14

On your calculators, use STAT -> EDIT to input the data from the table.

Now use STAT -> CALC -> ExpReg to calculate the equation for the best equation that fits this data.

Write your equation here:

y = 114.46 (98766)

Now adjust this equation to fit the actual data from the

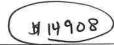
y= 114.46 (,98766) × +75

1. Increase 30 by 70%.	2. Decrease 250 by 80%.
БІ	50
3. 450 increased by 35%.	4. 145 decreased by 67%.
607.5	47.85
5. Increase your answer from #1 by 20%.	6. Increase your answer from #2 by 70%.
61.2	85

The Multiplier -> The "High School" method of increasing or decreasing by various percentages. Many applications for exponential growth/decay.

3. If \$10,000 is deposited in a savings account earning 4% interest every year, how much money is in the account after 10 years?

> 10000 (1+.04) \$ 14 802

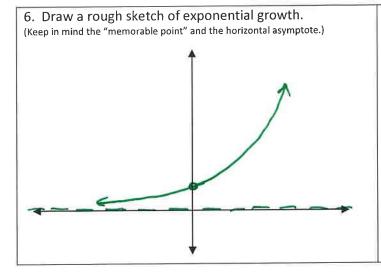

4. A \$17,000 car depreciates in value by 15% each year. How much will this car be worth in six years?

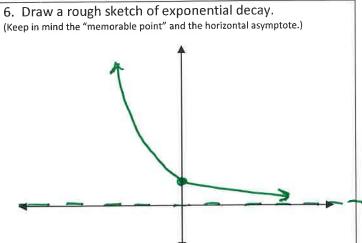
\$1 6412

Identify whether each exponential function is growth or decay. Also, discuss the details of each function.

9. $y = 5(1.25)^x$		10. $A = 1000(1.0)$	8) ^t	11. $f(x)$	$=5(.92)^x$	
	G		G			D
12. $g(x) = 54 \cdot \frac{1}{2}^x$		13. $y = 10(2)^{-x}$		14. A =	$12\left(\frac{1}{3}\right)^x$	
s	D		D			D
12. $b(x) = 40(3.8)^x$	13. $z(x)$	$=0.4^{x}$	14. $k(x) = 500(.9)$	99) ^x	15. $f(x) = 17(4)$) ^x
G		\mathcal{O}		D		G

7. Frank invests \$12,000 in an account that earns 7.5% interest compounded annually. What is the total amount of his investment after 3 years?


5. Compare the ending amounts of a \$5000 investment at 18% annual interest for 10 years when:


a. Compounded Yearly

5000 (1 +.18)

b. Compounded Weekly

d. Compound every second

8. Discuss the information in this table.

GE	BEN INVESTS:		ART	HUR INVESTS:
9	2,000	2,240	Û	0
20	2,000	4.749	0	0
21	2,000	7,558	Ü	0
22	2,000	10,706	0	0
23	2,000	14,230	Ò	0
24	2.000	18,178	0	0
25	2.000	22,599	0	0
26	2,000	27,551	0	0
27	0	30,857	2,000	2,240
28	0	34,560	2,000	4,749
29	0	38,708	2,000	7,558
30	0	43,352	2,000	10,706
31	0	48,554	2,000	14,230
32	0	54,381	2,000	18,178
33	0	60,907	2,000	22,599
34	0	68,216	2,000	27,551
35	0	76,802	2,000	33,097
36	0	85,570	2,000	39,309
37	0	95,383	2,000	46,266
38	0	107,339	2,000	54,058
39	0	120,220	2,000	62,785
40	0	134,646	2,000	72,559
41	0	150,804	2,000	83,506
42	0	168,900	2,000	95,767
43	0	189,168	2,000	109,499
		211,869		124,879
44	0		2,000	142,104
45	0	237,293	2,000	161,396
46	0	265,768		183,004
47	0	297,660	2,000	207,204
48	0	333,379	2,000	
49	0	373,385	2,000	234,308
50	0	418,191	2,000	264,665
51	0	468,374	2,000	298,665
52	0	524,579	2,000	336,745
53	0	587,528	2,000	379,394
54	0	658,032	2,000	427,161
55	0	736,995	2,000	480,660
56	0	825,435	2,000	540,579
57	a	924,487	2,000	607,688
58	0	1,035,425	2,000	682,851
59	0	1,159,676	2,000	767,033
50	0	1,298,837	2,000	861,317
51	0	1,454,698	2,000	966,915
52	0	1,629,261	2,000	1,085,185
63	0	1,824,773	2,000	1,217,647
54	0	2,043,746	2,000	1,366,005
55	0 42.20	88,996	2,000	\$1,532,166

9. What are the implications represented in the table to the left?

10. Use an investment application online to explore different investment possibilities. Write down some of these options.

Copied from Module 7: Lesson 5 - Example 1

Examine Scatter Plots

Use a graphing calculator to make a scatter plot of the data in the table. Then determine whether the data are best modeled by a *linear*, quadratic, or exponential function.

×	-5	_4	-3	-2	-1	О	1	2	3	4
y	-3	-2.7	-2.4	-2	-1	0	2.8	8	17.2	31

Copied from Module 7: Lesson 5 - Example 2

Model Data by Using Technology

COFFEE Forty years after opening their first shop, a popular coffee company grew to over 17,000 locations worldwide. The table shows the number of shops in the years since the company began. Use the data to determine a best-fit model. Then, use the model to make predictions.

IN CLASS

Coffee Shop Growth							
Years Since Opening	Shops	Years Since Opening	Shops				
0	1	28	2498				
16	17	30	4709				
18	55	32	7225				
20	116	34	10,241				
22	272	36	15,011				
24	677	38	16,635				
26	1412	40	17,003				

Copied from Module 7: Lesson 5 - Extra Example 2

Model Data by Using Technology

WORLD POPULATION It is estimated that the world population reached 1 billion around 1804. Since then, it has been increasing at a dramatic pace. The table shows the estimated world population in billions since 1900. Use a calculator to determine the model of best fit. Then, use the model to predict.

Years Since 1900	Population (billions)
0	1.656
50	2 558
60	3.043
70	3.713
80	4.451
90	5.289
100	6.089
110	6.892

Part	В			
Hse	the	model	to	predict.

Use the original data to estimate the world population in the given years.

a. 1930: b. 1995: c. 2020:

Use the model of best fit to predict the world population in the given year

a. 1930: b. 1995: c. 2020:

*Solve each using Guess & Check on your calculators. Round answers to the nearest hundredth.

1.
$$10^x = 14517$$

$$2. 2^x = 1000$$

3.
$$5.3^x = 123456$$

×≈ 4.16

×≈ 9.97

x % 7.03

These questions have "nice" solutions, so do this set without a calculator.

$2. \ 2^x = 8$	2. $5^x = 25$	2. $2^x = \frac{1}{8}$	2. $3^x = 81$
x = 3	X = 2-	×= -3	× = 4
$2. \ 4^x = 64$	2. $2^x = 64$	2. $3^x = \frac{1}{9}$	2. $5^x = 125$
X = 3	× = 6	X=-3	× = 3

MODULE 8: Lesson 1 – Logarithms and Logarithmic Functions

The word logarithm originates from two Greek words:

Logos meaning reason or <u>logic</u>

Arithmus meaning <u>number</u>

So the word logarithm basically means a logical number.

Example: The logarithm base 10 of 1000 looks like this:

 $log_{10}1000$

Which means... "To what number do you have to raise 10 to get 1000?"

The answer is 3 because $10^3 = 1000$. Therefore, $log_{10}1000 = 3$.

Try these. Evaluate each. The first answer is given as an example.

1. $log_2 8 = 3$	2. log ₅ 25 = 2		$4. \log_4 64 = 3$
5. log ₄ 4 = 1	$6. \log_4 1 = 0$	7. log ₂ 2 = ($8. \log_2 1 = 0$
$9. \log_2\left(\frac{1}{8}\right) = -3$	10. log ₃ 81 = 4	11. $log_3\left(\frac{1}{27}\right) = -3$	$12. \log_5\left(\frac{1}{5}\right) = -1$

* Introduction to Solving Logarithmic Equations - Solve each for x.

$13. \log_2 8 = x$	$14. \log_5 5 = x$	15. $log_{10}\left(\frac{1}{100}\right) = x$	16. $3^x = 3^7$
×=3	X=1	X= -2	× = 7
17. $7^{x+3} = 7^{2x+1}$	18. $(2)^{x+4} = (4)^x$	19. $log_x 49 = 2$	20. $log_3 x = 4$
×= 2	x=4	x=7	x = 34 or 81

Solve each for x.

9. $log_x 4 = \frac{1}{2}$	10. $log_{10}x = log_{10}6$	11. $log_7(x+1) = log_77$	12. $log_3 2x = 2$
×= 16	×=6	×=6	x = 4.5
13. $log_3(3^2) = x$	14. $log_x 25 = \frac{2}{3}$	15. $log_{27}9 = x$	
x=2	x=125	× = 2/3	

懿

Find the value of v in each equation.

19. $v = log_{10}1000$	20. $v = log_{15}225$	21. $v = log_{12}144$	$22. 8 = log_2 v$
v = 3	V=2	V = 2	V=2800256
23. $-4 = log_4 v$	24. $-3 = log_7 v$	$252 = \log_v \frac{1}{100}$	26. $log_v 729 = 6$
V=4" 02 (4")	V = 7 0 = 73	V = 10	V ⁶ = 729 V=3

* Solving Logarithmic and Exponential Equations

Solving Logaritimic and Exponential Equations			
1. $4^x = 4^{3x-1}$	3. $8^2 = 4^{x+5}$	$2. \log_{10}(2x) = \log_{10}(x+7)$	
	6 - 3 2x+10		
. 1	2 = 2	x=7	
×=2	x = -2	,	
5. $3^{\log_3 8} = x$	4. $log_2 32 = x$	6. $\log_2 7x = \log_2 (x^2 + 12)$ $\times^2 -7x + 12 = 0$	
×=8	×=5	(x-3)(x-4)=0	

*Evaluate each expression.

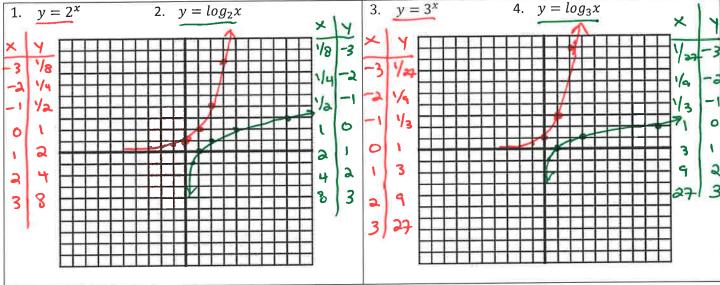
Evaluate each expl	63310111		
7. log ₄ 4	8. $5 \cdot log_4 4$	9. $\log_4 4 + \log_4 4 + \log_4 4 + \log_4 4 + \log_4 4$	10. $log_4 4^5$
1	5	5	5
,			

MODULE 8: Lesson 2 - Properties of Logarithms

MODULE 6. Ec33011 2 Troperties 6. Eugaritanis		
There is a Logarithm button on your calculator. Find it.	The common log of 1000 can either be written $log_{10}1000$ or $log 1000$.	
LOG	(If a base of the logarithm is not shown, it is assumed to be log base 10.)	
	This is similar to a square root not needing to show the root index. Remember that $\sqrt{}$ and $\sqrt[3]{}$ mean the same thing.	
It is a "common logarithm" or log_{10} "log base 10" and is on our calculators because our number system is base 10.		
Test it out.		

 $log_{10}1000 = 3$ which means that $10^3 = 1000$. Type log 1000 on your calculator. Did it work?

QUIZ IN 2 PARTS.


(PACLET PAGE 17 & QUESTIONS 2,3,9,10 FEWN)

CALCULATOR

APPLICATIONS

PACICET PAGES 19,20,24

Review

Determining Inverses Algebraically.

Determine the inverse for $f(x) = \sqrt{7x - 1}$

Determine the inverse for $h(x) = \frac{3}{2}x - 7$

$$f'(x) = \frac{x^2+1}{x^2+1}$$

$$h'(x) = \frac{2(x+7)}{3}$$

Determine the inverse for $f(x) = (x - 6)^2$

Determine the inverse for $g(x) = \sqrt{2x-3}$

$$g'(x) = \frac{x^3+3}{2}$$

Determine the inverse for $f(x) = 2^x$

Determine the inverse for $g(x) = 3^x$

Determine the inverse for $h(x) = 10^x$

Determine the inverse for $h(x) = 7^x$

YOU WILL BE RESPONSIBLE TO SOLVE WITHOUT A

$$\frac{3 \cdot 11}{3} = 483$$

your worksheet.)

THIS moons

$$\begin{vmatrix} 2 \\ 10 \end{vmatrix} = 3 \times + 1$$

$$3x = 99$$

$$x = 33$$

CONVERT TO LOG BASE P.

(THIS IS THE EXACT SOLUTION.)

$$e^{4} = 2x - 1$$

$$e^{+1} = 2x$$

$$\chi = \frac{e^4 + 1}{a}$$

AGAIN ... AN EXACT SOLUTION .

compare wil your CALCULATED SOLUTION.

Formula Bank

Compound Interest Formula (when
$$n = 4, 12, 365, etc.$$
): $A = P\left(1 + \frac{r}{n}\right)^{nt}$

when
$$n = 1$$

$$A = P(1+r)^t$$

Continuously Compounded Interest: $A = Pe^{rt}$

when $n = \infty$

$$A = Pe^{rt}$$

$$A = A_o e^{rt}$$

$$N(t) = N_o e^{kt}$$

$$A = P\left(\frac{1}{2}\right)^{\frac{t}{halflife}}$$

$$I(dB) = 10 \log \left[\frac{I}{I_o} \right]$$

$$M = \frac{2}{3}\log\left(\frac{E}{10^{11.8}}\right)$$

Warm-Up/Review

1. Increase 45 by 36%.

2. Decrease 167 by 13%.

61,2

145, 29

- 3. Decrease 56 by 20%. Continue this process for four more steps. STEP -> 44.8
- 4. There is a \$25 shirt that you would like to buy. The store is offering 40% off the shirt. You also have a 15% off coupon to use. Sales tax in this particular county is 6.5%. What will the cash register total be for your new shirt?

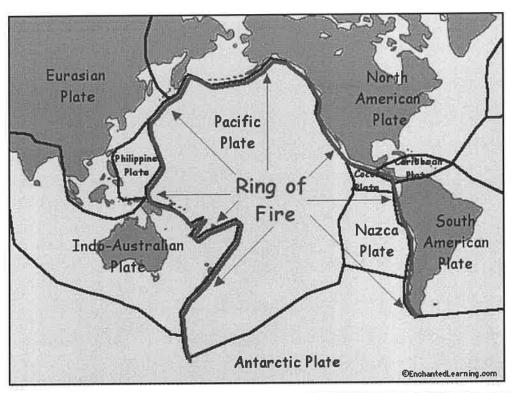
5TH STEP -> 18.35

13.58

- 5. The value of a painting is \$12,000 in 1990 and increases by 8% of its value each year. Write and evaluate an expression to estimate the paintings value in 2005.
- 6. 11 bacteria cells double every 30 minutes. How many cells will there be after:
 - a. 2 hours

c. 6 hours

\$ 45056 CEUS


\$ 38066

- 7. \$15,000 is placed in a savings account earning 7% interest compounded monthly. How much will be in the account if you let it sit for 15 years?
- 8. An investor puts \$5000 in an account that earns 6.5% annual interest which is compounded continuously. Find the amount that will be in the account at the end of 5 years if no deposits or withdrawals are made.

HEROND A GOOD

		už	SOUTIONS R	EFLECT USING Q. SLIGHTLE DO MAY BE DIFFERENT	,
* Extra Practice: Work on these questice 9. Iodine-131 is radioactive material that follows an exponential decay model. A sample has 100 grams of iodine-131. The daily decay rate of iodine-131 is087. How much will be left after 9 days.	ons involving the number e. 10. How long would it take to make \$2,000 if you invested \$800 at 5% interest compounded continuously?		11. You deposit \$ earns 11% interes	5000 in an account that 🛶	THE
45.7g	4 <i>3</i> 0	st 8 years			
12. You deposit \$1,000 in an account that earns 3% interest compounded continuously. How much would be in the account 20 years later?		13. An investor wants to make his \$30,000 into \$50,000. What rate would he need to get on his investment if he deposits it into an account for 8 years earning continuous interest?			
¥ 1822			PSO	14% 6.4% 10 10 10 10 10 10 10 10 10 10 10 10 10	
14. An investment service promises to triple your money in 12 years. Assuming continuous compounding of interest, what rate of interest is needed?		15. The population of a certain insect has a daily growth rate of .02 and follows the law of uninhibited growth. What is the population after 10 days if the initial population is 500?			
A GO	a. 2°10		RAO	or weeking	
16. The population of India was estimated to be 1,056,576,000 in 2000 and 1,234,281,000 in 2010. Assume that this population growth is exponential. a. Use the exponential growth function, $P(t) = P_0 e^{kt}$, to find the value of k. b. Estimate the population in India this year, rounded to the nearest hundred thousand. c. Use the function you wrote in part a to estimate the year in which the population will reach 2 billion.					
b. 1.51 BILLION PEOPLE ESTIMATED C. ABOUT 2041					

ETHEO.

1. Jammu and Kashmir is the northernmost state of India. It is situated mostly in the Himalayan mountains. In 2005, an earthquake was reported in this region with an energy level of 1.12×10^{22} ergs. What was the Richter Scale reading of this earthquake?

2. The "infamous" San Francisco earthquake of 1906 measured 8.0 on the Richter Scale. What was the energy level of this particular earthquake?

6.8

3. From December 1811 to early 1812, a series of earthquakes shook the Mississippi Valley near New Madrid, Missouri. One of the earthquakes released about 2.5×10^{24} ergs of energy. Find the earthquake's magnitude on the Richter Scale. Round your answer to the nearest tenth.

4. An earthquake was measured to have a Richter Scale reading of 7.2. What was the energy level of this particular earthquake?

8.4

3. Plutonium-238 has a half-life of 88 years.

3. Plutonium-238 has a hall-life of 86 ye	14-7 (14)	
a. Determine the decay rate, r, of	b. How long would it take a sample	c. If a 1200 gram sample of
Plutonium-238.	of Plutonium-238 to decay to 75% of	Plutonium-238 decayed for 300
	its original amount .	years, how much of the Plutonium-
	_	238 would be around after this time
98		period?
007°	GARS	
C =00788	1,50	
~ ~	36	
	36.5 Jens	13,8
		A PROJE
		6.,

4. Use decay constant, r, for Carbon-14 dating (r =000121) to help answer the following questions.				
a. If an original sample of C-14	b. A certain object, that was found in	c. Another object contained 30% of		
weighed 1,200 g, how much Carbon-	a dig, contained 50% of its original	its original Carbon-14.		
14 would remain after 2000 years?	Carbon-14. Approximately how old	Approximately how old is this object?		
21 Would remain area 2007 years	was the object?			
a42 g	S730 Geres	agso years		
d. What is the half-life of Carbon-14?	e. How much of a 200g sample of	f. An ancient artifact is found.		
(Hint: Think time)	Carbon-14 would still be around after	Scientists determine that the artifact		
(Time: Timik time)	1000 years?	has 40% of its original Carbon-14		
	2000 , 555	remaining. Approximately how old is		
		the artifact?		
EARS				
5730 YEARS		220		
9	127 8	7573 years		
	\', \	.5 ²		
		7.		