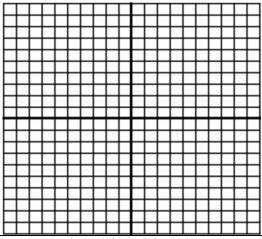

1. Accurately graph $y = -x^2 + 3$.

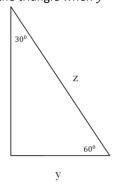
2. Solve the triangle when z = 24.

2. Multiply (x + 1)(x - 7)(x - 3)

4. Factor $3x^2 - 10x - 8$.


Algebra 2 Basic Skills Quiz Practice (Qtr2)

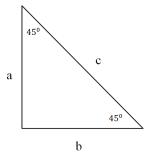
Name


Period _____

Calculators are NOT allowed on these quizzes. This is practice for the quiz.

1. Accurately graph $y = \sqrt{x} + 3$.

2. Solve the triangle when y = 5.

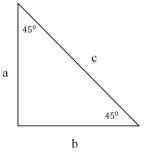


2. Multiply (x - 1)(x - 4)(x + 6)

4. Factor $2x^2 + 5x - 12$.

 \mathbf{X}

7. Solve the triangle when $b = 5\sqrt{3}$.

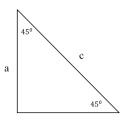

8. Determine the equation of the inverse of the given function. Finalize your answer by solving for *y*.

$$f(x) = \sqrt{x-4} + 2$$

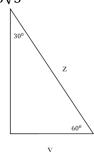
7. Solve $x^2 - 8x = 20$ by either factoring and zpp, completing the square and solving, or the quadratic formula.

8. Solve $x^2 - 8x = 20$ using another technique.

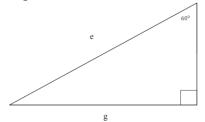
7. Solve the triangle when $c = 7\sqrt{2}$.

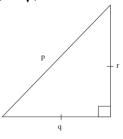

8. Determine the equation of the inverse of the given function. Finalize your answer by solving for y.

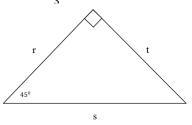
$$f(x) = \frac{4}{3}x - 2$$

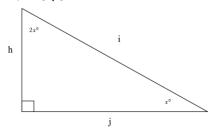

- 7. Solve $x^2-10x=-24$ by either factoring and zpp, completing the square and solving, or the quadratic formula.
- 8. Solve $x^2 10x = -24$ using another technique.

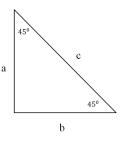
Solving Special Right Triangles						
	Draw an accurate square (take your time), and then draw a single segment that splits this square into two equal triangles.	Draw an accurate equilateral triangle (again, take your time), and then draw a single segment that splits this equilateral triangle into two equal triangles.				
	The two triangles above are called isosceles right triangles or 45-45-90 triangles. Do you see why? Please explain.	The triangles above are called 30-60-90 triangles. Do you see why? Please explain.				
	Col. to a Constitute Triangle					
	Draw an accurate square (take your time), and then draw a single segment that splits this square into two equal triangles.	Draw an accurate equilateral triangle (again, take your time), and then draw a single segment that splits this equilateral triangle into two equal triangles.				
	The two triangles above are called isosceles right triangles or 45-45-90 triangles. Do you see why? Please explain.	The triangles above are called 30-60-90 triangles. Do you see why? Please explain.				

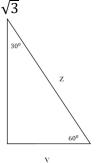


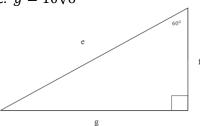

b.
$$y = 5\sqrt{3}$$

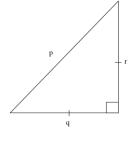

c.
$$g = 10\sqrt{6}$$

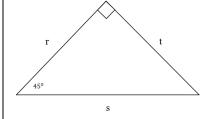

d.
$$p = \sqrt{7}$$

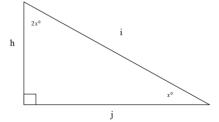

e.
$$r = \frac{10\sqrt{21}}{3}$$


f. $i = 5\sqrt{5}$


a.
$$b = 5\sqrt{6}$$


b.
$$y = 5\sqrt{3}$$


c.
$$g = 10\sqrt{6}$$


d.
$$p = \sqrt{7}$$

e.
$$r = \frac{10\sqrt{21}}{3}$$

f.
$$i = 5\sqrt{5}$$

