
Algebra 2 Semester Exam REVIEW

1. The graph of a function is shown. What is the domain and range of this function?

2. Which of the following define y as a function of x?

I		II	III
х	у		
-1	5	$x^2 - 4 = y^2$	
-2	2		
-3	1		
-4	2		
-5	5		

3. Choose the **even** function. Show work/explain.

a.
$$f(x) = 4x^3 - 2x^2$$

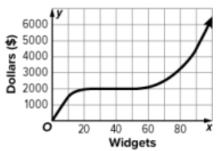
b.
$$f(x) = x^3 + 2x$$

b.
$$f(x) = x^3 + 2x$$
 c. $f(x) = 3x^2 + 2x$ d. $f(x) = -x^2 - 2$

d.
$$f(x) = -x^2 - 2$$

4. Complete the sentence about the end behavior of $f(x) = x^2 + 3x + 2$. As x approaches positive or negative infinity, f(x) approaches _____

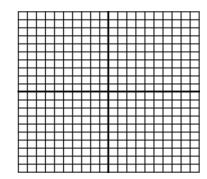
b. 0


c. 5

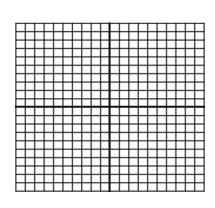
d. ∞

5. The graph shows the **revenue (\$)** function for widgets at the \$2500.

b. Over what interval of widgets produced does the Average Rate of Change of the function appear to be the greatest. Columbus Widget Factory.



6. y = -2|x+3|+4


7. Now, **Graph each step** of the transformation:

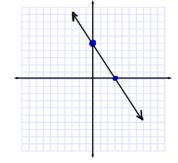
Identify the type of function_____

8. Graph of the inequality 5x - y < 2.

Remember dashed/solid, shading, etc.

9. Solve 5x + 2 = -(4x + 3)

10. This graph best represents the solution of which inequality?


a. $x < \frac{2}{3}$ b. $x \ge -\frac{2}{3}$ c. $x > -\frac{2}{3}$ d. $x \le -\frac{2}{3}$

11. The graph of the line is shown at the right.

Find m =

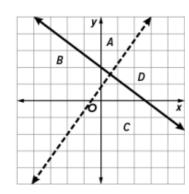
Find b = _____

Find mb = _____

12. What is the solution to the system of equations?

SHOW OR EXPLAIN YOUR METHOD TO SOLVE.

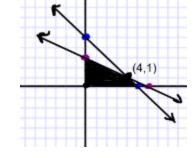
$$2x + 6y = 18$$


$$2x + 8y = 4$$

13. Identify the solution **region** represented by the system of inequalities:

Show work.

$$7x - 5y < -4$$


$$3x + 4y \le 8$$

14. The graph is given. The feasible region based upon certain constraints is shown in the graph for the objective function f(x, y) = 7x + 6y.

Show your work to determine the Min and Max.

- a. Max: _____
- b. Min: _____

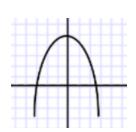
15. Solve the system. **SHOW OR EXPLAIN YOUR METHOD TO SOLVE.**

$$x + y + z = 3$$

$$x - 3y + z = -5$$

$$x + y - z = 9$$

16. What is the average rate of change of 17. Solve and Graph $|9 - x| \ge 14$? f(x) over the interval [-3,2].

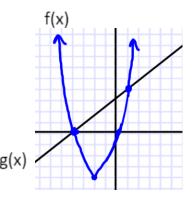

SHOW WORK TO JUSTIFY YOUR ANSWER.

х	f(x)
-3	ფ
-2	-5
-1	-3
0	3
2	13
3	27

18. Given the function $f(x) = x^2 + 5x + 3$ state:

Equation for Axis of symmetry_____; Vertex _____

19. Given the graph at the right, what are the apparent roots of the equation related to the function graphed on the coordinate grid?


- 20. Simplify *i*²⁶⁶
- 21. Multiply binomials (4 + 3i)(-6 4i) 22. Factor $8x^2 10x 18$
- 23. **3.5/3.6** The zeros of a quadratic functions are -4 $\sqrt{11}$ and -4 + $\sqrt{11}$. The y-intercept is 5. What is the equation of the quadratic function?
 - a. $y = x^2 8x + 5$ b. $y = x^2 4x 11$ c. $y = x^2 4x + 11$ d. $y = x^2 + 8x + 5$

- 24. **3.5** Convert the equation $y = -2x^2 + 8x 17$ to graphing/vertex form:

25. **3.3** Solve $x^2 - 2x + 4 = 0$

26. The quadratic equation $ax^2 + bx + c = 0$ has real solutions if _____ and has imaginary solutions if

27. Using the graphs at the right, suppose f(x) = x(x + 4) and g(x) = x + 3. What is the interval when f(x) > g(x)?

28. Solve the systems of equations. Identify your method.

$$y = 2x^2 - 3x + 8$$

$$y = -4x^2 + 11$$

29. A cannonball is shot into the air. Its height can be described by the equation h = -3(t - 1)(t - 9), where h is the height of the cannonball in feet and t is the time in seconds.

Graph the function on your calculator and use the graph and/or table to describe what happens to the cannonball at certain values or intervals along its flight path. Drawing may help you!

Things to consider: At what time does the cannonball hit the ground? When is the cannonball at its highest point? How high is the highest point? When is the cannonball moving upward? downward?