These next few questions were taken from your McGraw Hill online Book. Remember that solutions are all about truth!

1.

What is the solution of this system of equations?

x + y + z = 4

x - y + z = 6

x + y - z = 0

O A) (3, -1, 6)

B) (3, −1, 2)

O C) (6, 2, 2)

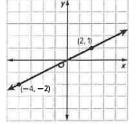
O D) (-3, 5, 2)

2.

Solve $-3(x+7) \le -15$.

x+7≥5 × ≥-2

O A) $x \ge 5$


OB) $x \leq 5$

 \bigcirc C) $x \ge -2$

O D) $x \le -2$

3...

Select all the equations that model the line shown on the graph

A A) $y + 1 = \frac{1}{2} (x + 2)$

 $\Box \ \ \mathsf{B})\,y + 4 = \tfrac{1}{2}\,(x + 2)$

 \sum C) $y-2=\frac{1}{2}(x-4)$

E) $y+2 = \frac{1}{2}(x+4)$

F) $y-1=\frac{1}{2}(x-2)$

Solve each without a calculator using algebraic methods or graphing by hand.

4. 2(x+4)-3=7x-5

2x +8 -3 = 7x-5

2x +5 = 7x-5

10 = 5x

x=2

 $2(x+5) \ge -6$

x +5 ≥ ~3

V > -8

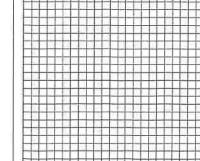
6. 3|x+5|+1=16

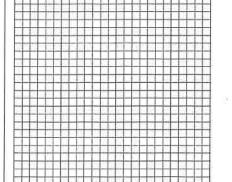
3 | x+5 | = 15

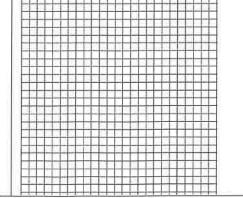
(x+5) = 5

x+5 = 5

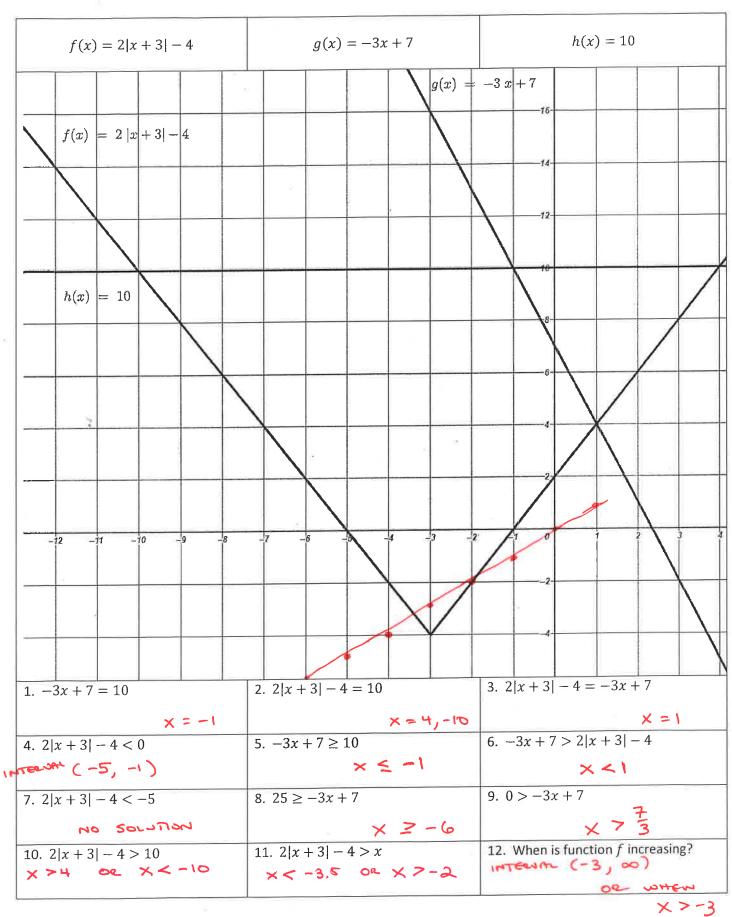
x=0, -10


7. 2|x-3|-5x>18


Challenge:


|x+3| = -|x-1| + 7

 $X < \frac{-19}{2}$


x = a.5, -4.5

The graphs of 3 functions are given in both graphic and equation form. Solve each equation or inequality below. Use a method of your choice. If you get stuck, try answering the questions based on what you are seeing in the graphs. After that, challenge yourself by working some algebra techniques into your process.

Intro Example 1: NO CALCULATORS

I am thinking of two numbers. The first plus the second is equal to 13. Write out at least ten pairs of values that make this statement true?

I am thinking of two numbers. The first minus the second is negative three. Write out at least ten pairs of values that make this statement true?

$$m^{mny}$$
 $X - y = -3$ $(4,7)$ $(-9,-6)$ $= 72.$

Write out as many solutions as possible when combining both of these statements:

The first plus the second is equal to 13, and the first minus the second is negative three.

ETC.

Intro Example 2: You may use a calculator to assist with this.

A landscaping company placed an order with a nursery, The order was for 13 bushes and 4 trees and totaled \$487.

Write out at least three ways this order may have been placed based on various different prices for bushes and

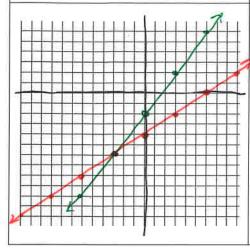
A landscaping company placed an order with a nursery. The order was for 6 bushes and 2 trees and totaled \$232.

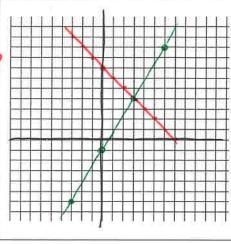
Write out at least three ways this order may have been placed based on various different prices for bushes and trees

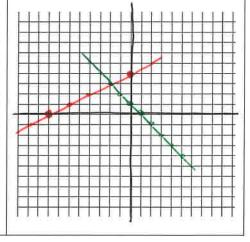
Now if both of these orders were placed on the same day, how much does this landscaping company charge for individual bushes and trees?

An order for 13 bushes and 4 trees and totaled \$487 and an order for 6 bushes and 2 trees and totaled \$232. How much does the landscaping company charge for individual bushes and trees?

Introduction to Systems of Linear Equations


* Solve each system of equations by graphing.


1.	
$\int y = \frac{4}{3}x - 2$	•
$\begin{cases} y = \frac{4}{3}x - 2\\ y = \frac{2}{3}x - 4 \end{cases}$	


$$\begin{cases} y = \frac{5}{3}x - 1 \\ y = -x + 7 \end{cases}$$

3.
$$\begin{cases} x + y = 1 & \\ x - 2y = -8 & \\ \end{cases}$$

(-2,3)

* Fill in the table for each function, and solve each system by using a table.

4.	
$\begin{cases} y = \frac{5}{3}x - 1\\ y = -x + 7 \end{cases}$	9
y = -x + 7	9

(3,4)

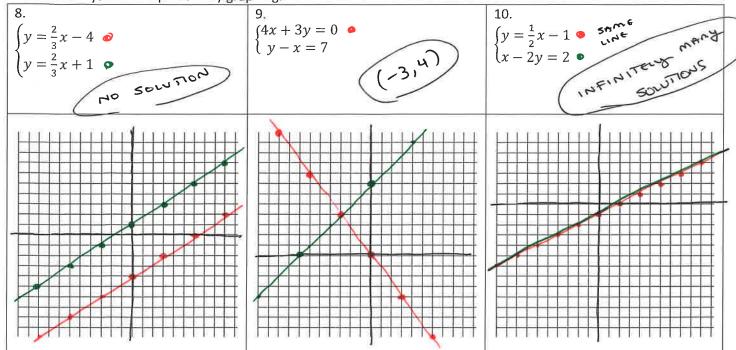
5.	
(4x + 3y = 0	•
(y - x = 7)	D

(-3,4)

$$\begin{cases} y = 2x - 4 \\ 7x - 5y = 14 \end{cases}$$

 $y = \frac{1}{3}x - \frac{14}{5}$

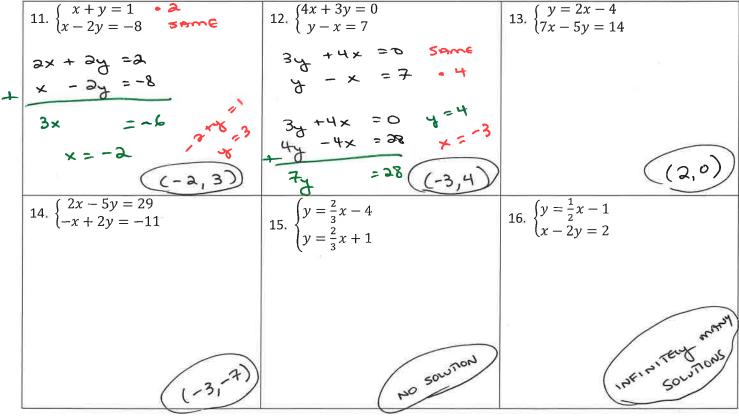
/.	
(200 Ext - 20)	9
$\begin{cases} 2x - 5y = 29 \\ -x + 2y = -11 \end{cases}$	-
1 . 0 . 44	-
(-x + 2v = -11)	ø


L				
	x	у	x	у
	-12	-21	-12	19
	-9	-16	-9	16
	-6	-11	-6	13
	-3	-6	-3	10
	0	-1	0	7
(3	4	3	4
	6	9	6	1
	9	14	9	- 5
	12	11	12	-5
15	15	24	15	-8

	x	у	x	у
	-12	16	-12	- 2
	-9	13	-9	-2
	-6	8	6_	1
0	-3	4	-3	4
	0	0	0	7
	3	-4	3	10
	6	2	6	13
	9	-19	9	16
	12	-16	12	19
	15	-96	15	22

X	y	X	y
-13	-30	-13	-91
-8	-20	-8	-14
-3-	-10	3	-7
(2	0	2	0
7	0	7	7
12	80	12	14
17	30	17	21
22	40	22	28
27	50	27	35
32	40	32	42-

.4 -	х -Ч -	y 7.5
.4	-y -	7.5
2	-	
T .	-3 .	-7
4.6	-a -	-6.5
٠.	- 1	-6
8	0	-5.5
.4	\ -	-5
5	2 _	4.5
.6	3	-4
٦ ،	4 -	3.5
.8	5	-3
	8.9	.3 -1 .8 0 . .4 1 -


* Solve each system of equations by graphing.

Steps for Elimination Process

- 1. Line Up Terms (x, y, =, constant)
- 2. Multiply one or both equations by constants so that a variable has the same, but opposite value.
- 3. Add equations and solve for remaining unknown.
- 4. Use this solution to find the other unknown and write your solution as an ordered pair.

* Solve each system of equations using Elimination.

Systems of Linear Equations Substitution

Steps for Substitution Process

- 1. Solve for one of the variables in one of the equations.
- 2. Substitute this value into the other equation to eliminate a variable.
- 3. Solve this equation for the unknown.
- 4. Use this solution to find the other unknown and write your solution as an ordered pair.

* Solve each system of equations by using substitution.	
17. $\begin{cases} y = \frac{2}{3}x - 4 \\ y = \frac{2}{3}x + 1 \end{cases}$	$\begin{cases} y = \frac{1}{2}x - 1 \\ x - 2y = 2 \end{cases}$
>	$x - 2(\frac{1}{2}x - 1) = 2$ x - x + 2 = 2
	x - x + 2 = 2 2 = 2
NO SOLUTION	INFINITELY MANY SOWTIONS
$\begin{cases} 4x + 3y = 0 \\ y - x = 7 \end{cases}$	$\begin{cases} x + y = 1 \\ x - 2y = -8 \end{cases}$
(-3,47)	(-2,3)
21. $\begin{cases} y = 2x - 4 \\ 7x - 5y = 14 \end{cases}$	$\begin{cases} 2x - 5y = 29 \\ -x + 2y = -11 \end{cases}$
(2,0)	(-3,-7)

- * Solve each application using a system of equations and a solution method of your choice. Please show and/or explain your methods.
- 1. I am thinking of two numbers. The first plus the second is equal to 13. The first minus the second is negative three. What are the two numbers?

LET X = THE FILST NUMBER

LET Y = THE SECOND NUMBER

$$x - \lambda = -3$$

$$x + \lambda = 13$$

3. The admission fee at a small fair is \$1.50 for children and \$4.00 for adults. On a certain day, 2200 people enter the fair and \$5050 is collected. How many children and how many adults attended?

LET Y : # OF ADULTS ATTENDING

X +y = 2200 (TOTAL # OF PEOPLE ATTENDING)

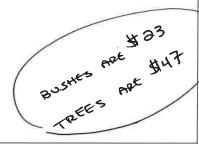
1.50 X +4 = 5050 (TOTAL AMOUNT
OF \$1 MADE)

X = 1500

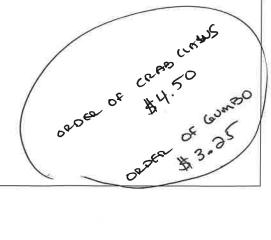
X = 700

X = 700

ATTENDED


5. Michael buys two bags of chips and three boxes of pretzels for \$5.13. He then buys another bag of chips and two more boxes of pretzels for \$3.09. Find the cost of each bag of chips and each box of pretzels.

BAL OF CHIPS HI.05


2. I'm thinking of two numbers. The first added to the second is ten. Two times the first minus the second is equal to negative sixteen. What are the two numbers?

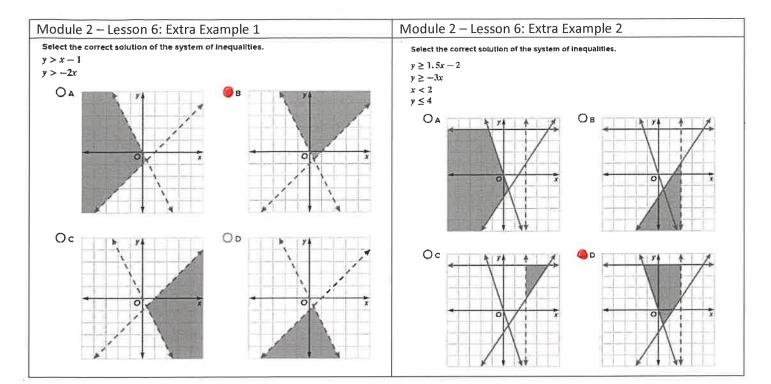
THE FIRST H IS 12

4. A landscaping company placed two orders with a nursery. The first order was for 13 bushes and 4 trees, and totaled \$487. The second order was for 6 bushes and 2 trees, and totaled \$232. The bills do not list the peritem price. What were the costs of one bush and of one tree?

6. At a restaurant four people order fried crab claws and four people order a cup of gumbo, with a total bill of \$31. If only two people had ordered the crab claws and one person ordered the gumbo, the bill would have been \$12.25. How much is each order of fried crab claws and each cup of gumbo?

Solving Systems of Linear Equations with Matrices

* Write the matrix to solve the linear system. Use your calculator to convert the matrix to Reduced Row Echelon Form. Write out this matrix, and identify the solution. (If you would like to compare your answers, these were the Table questions 4-8 from page 1 of your packet.)

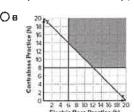

$\begin{cases} y = \frac{5}{3}x - 1\\ y = -x + 7 \end{cases}$
(B)

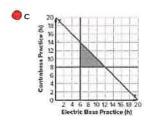
5. Solve the system. Write the matrix to solve the linear system. Use your calculator to convert the matrix to Reduced Row Echelon Form. Write out this matrix, and identify the solution.

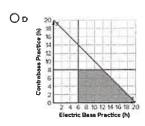
$$\begin{cases} x + y + z = -8 \\ 2x - y + 3z = -9 \\ 5x + 2y - z = 2 \end{cases}$$

Write the system of equations that represent the application below, write a matrix that can be used to solve the application, and then solve using your calculator.

- 16. John inherited \$25,000 and invested part of it in a money market account, part in municipal bonds, and part in a mutual fund. After one year, he received a total of \$1,620 in simple interest from the three investments. The money market paid 6% annually, the bonds paid 7% annually, and the mutually fund paid 8% annually. There was \$6,000 more invested in the bonds than the mutual funds. Find the amount John invested in each category.
- 17. Billy's Restaurant ordered 200 flowers for Mother's Day. They ordered carnations at \$1.50 each, roses at \$5.75 each, and daisies at \$2.60 each. They ordered mostly carnations, and 20 fewer roses than daisies. The total order came to \$589.50. How many of each type of flower was ordered?






MUSIC PRACTICE Noelle plays electric bass guitar in her school's jazz band and contrabass in a community orchestra. She needs to practice her electric bass guitar for at least 6 hours per week and her contrabass for at least 8 hours per week, but she cannot spend more than 20 hours each week practicing.

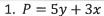
Select the graph of the system of inequalities that represents Noelle's weekly practice time.

Notes:

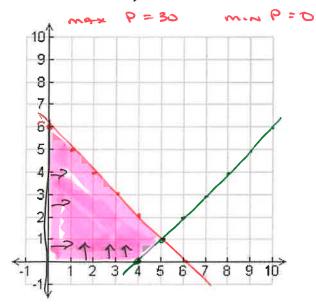
Some Definitions:

Maximum -

Minimum -


Constraints -

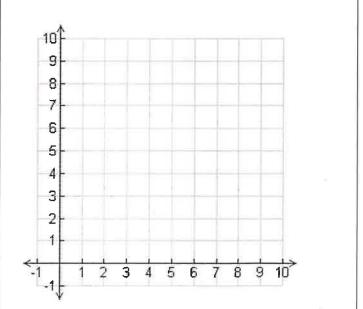
Feasible -


Objective -

Vertex/Vertices -

Find the maximum and minimum values of each objective function for the given constraints.

$$(5,1) \rightarrow P = 5(1) + 3(5) = 20$$


2. P = 4x + 7y

$$x + y \le 8$$

$$y-x \leq 2$$

$$x \ge 0$$

$$y \ge 0$$

