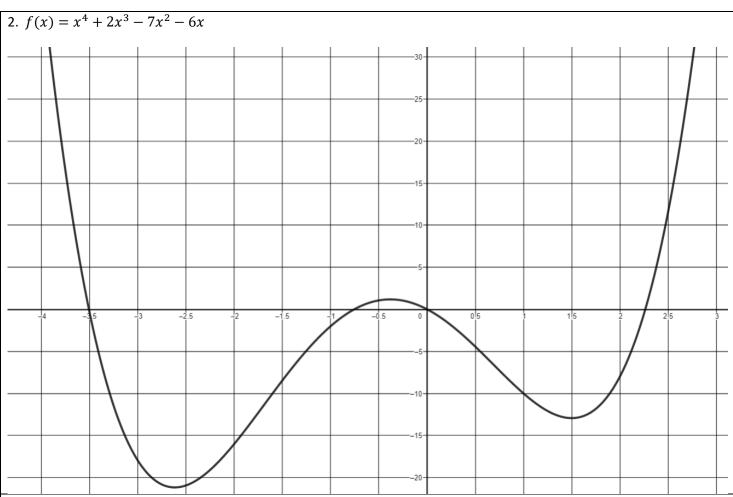

Modules 1 – Relations and Functions

Lesson 2: Linearity, Intercepts, and Symmetry

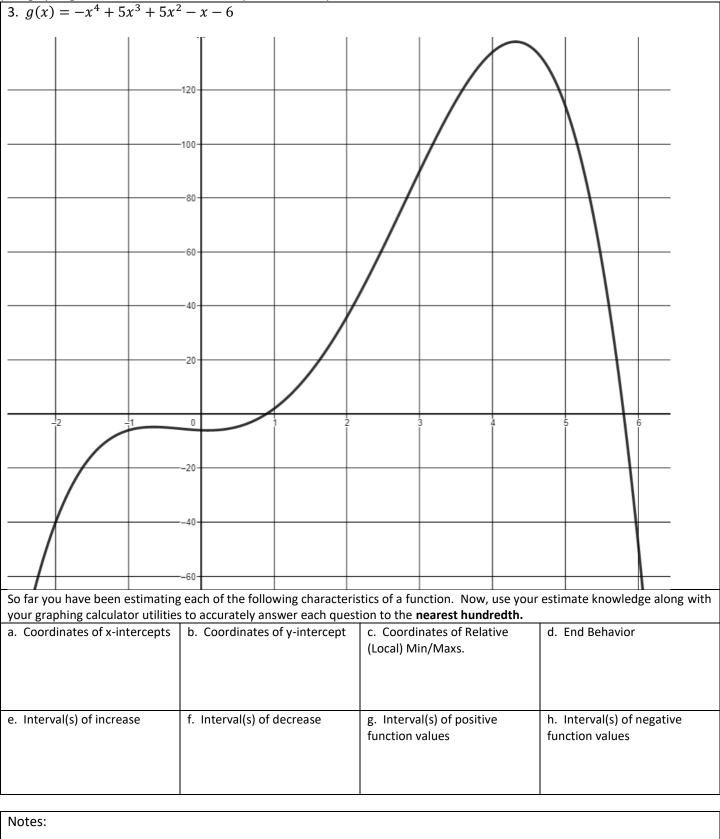
Lesson 3: Extrema and End Behavior

Lesson 4: Sketching Graphs and Comparing Functions


Notes:

Estimate answers to each of the following questions below. Your answers should prove that you understand each concept.

a. Coordinates of x-intercepts	b. Coordinates of y-intercept	c. Coordinates of Relative (Local) Min/Maxs.	d. End Behavior
e. Interval(s) of increase	f. Interval(s) of decrease	g. Interval(s) of positive function values	h. Interval(s) of negative function values


ymmetry Conversation Notes:	
•	
$f(x) = x^4 + 2x^3 - 7x^2 - 6x$	

Estimate answers to each of the following questions below. Your answers should prove that you understand each concept.

a. Coordinates of x-intercepts	b. Coordinates of y-intercept	c. Coordinates of Relative (Local) Min/Maxs.	d. End Behavior
e. Interval(s) of increase	f. Interval(s) of decrease	g. Interval(s) of positive function values	h. Interval(s) of negative function values

So far you have been estimating each of the following characteristics of a function. Now, use your estimate knowledge along with your graphing calculator utilities to accurately answer each question to the **nearest hundredth**.

Notes:	

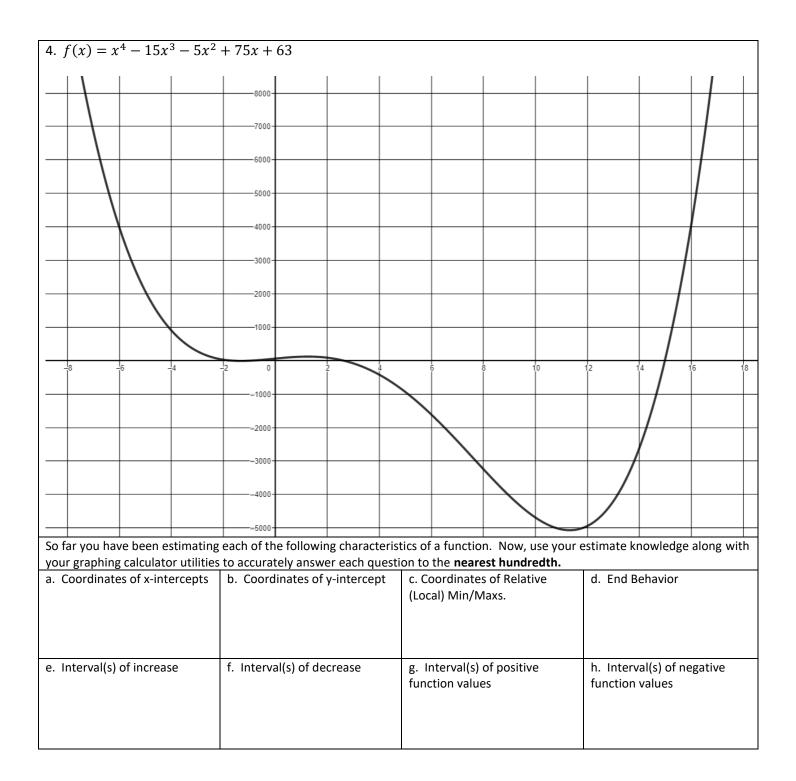
Copied from Module 1:4 Extra Example 3.

y-Intercept: Alicia's starting pace is 0 miles per hour. JOGGING Alicia jogs each morning before school. An app on Extrema: Alicia's fastest pace, 6 miles per hour, occurs from the 20th to 35th minute of her jog. her phone records her pace over the course of her 40-minute jog. Increasing: Alicia's pace is increasing from 0 to 20 minutes. Use the key features of her Jog to determine which graph could Decreasing: Alicia's pace is decreasing from 35 to 40 minutes. model It. End Behavior: Alicia starts jogging at 0 minutes and stops at 40 minutes. Part A Part B What assumption was made to graph the situation. Од A Alicia's pace increases and decreases at a constant rate. OB Alicia's maximum speed is 6 miles per hour. ΟD Ос Oc There are two x-intercepts. O D Alicia's speed is constant from the 20th to 35th minute.

Notes:		

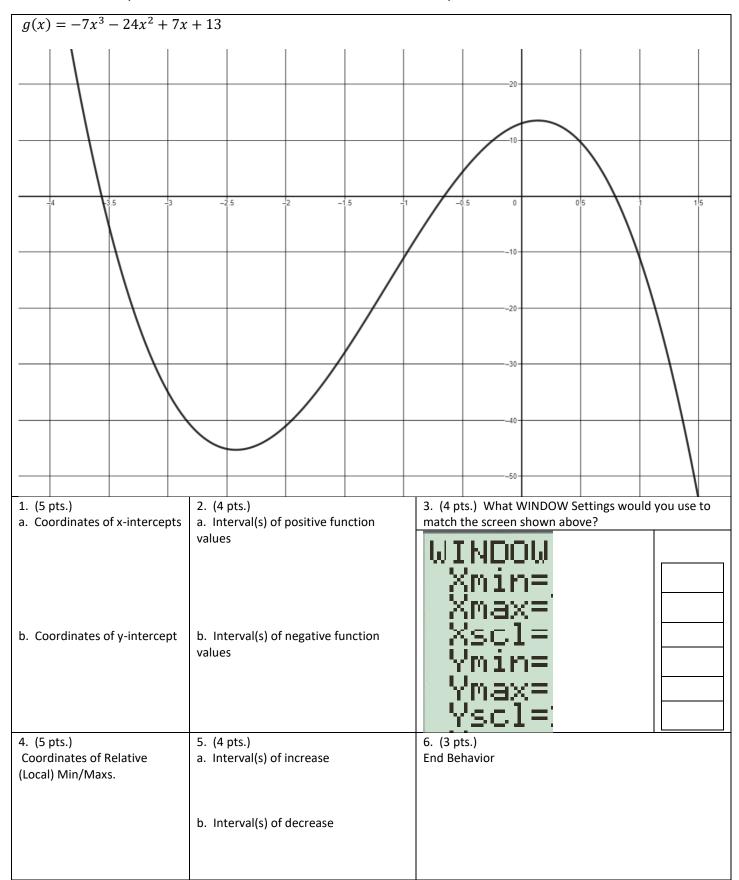
Copied from Module 1:4 Extra Example 4.

Use the table and description to compare the two functions.


x	f(x)
-4	0
-2	-1.5
0	-3
2	-4.5
4	-6

The graph of g(x) has a slope of -4 and passes through the points (0,-3) and $\left(-\frac{3}{4},0\right)$.

Which statements about f(x) and g(x) are true? Select all that apply.


_				
_ A	Both	functions	are	decreasing.

- \square B The *y*-intercept of f(x) is greater than the *y*-intercept of g(x).
- \Box **c** g(x) decreases faster than f(x).
- D Both functions have the same y-intercept.
- \square E The x-intercept of f(x) is greater than the x-intercept of g(x).
- \square **F** f(x) decreases faster than g(x).

Name	Period	

Answer each of the following questions below. Your answers must be accurate to 2 decimal places. You can estimate these answers, but you will not receive full credit due to a lack of accuracy.

Evaluating Piecewise Functions

Given:

$$f(x) = \begin{cases} x+1 & if & -5 \le x < 5 \\ 2x-4 & if & 5 \le x < 10 \end{cases}$$

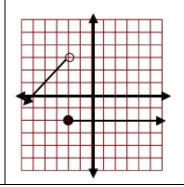
$$g(x) = \begin{cases} 5 & \text{if } -4 \le x < 1 \\ 2x & \text{if } 1 \le x \le 3 \\ -\frac{1}{3}x + 1 & \text{if } x > 3 \end{cases}$$

$$h(x) = \begin{cases} 3 - x & \text{if } -8 < x < -3\\ 9 & \text{if } -3 \le x < 1\\ x^2 + 3 & \text{if } 1 \le x \le 2\\ -3 & \text{if } x > 2 \end{cases}$$

Evaluate each function.

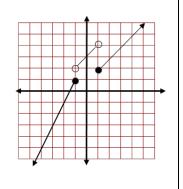
1. f (6) =	2. $h(-5) =$	3. g(0) =	4. f (- 4) =
5. h(2)	6. h (-2)	7. f (5)	8. g (3)
9. g (1)	10. $f(g(9))$	11. $h(f(3))$	12. $g(f(h(2)))$

Notes:			

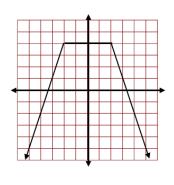

Identify the Domain and Range of each function. Assume that the units are 1.

Range:

Domain: _____


14. Domain: _____

Range:


15. Domain: _____

Range:

16.
Domain: _____

Range:

Graph each piecewise function. Identify the Domain and Range of each function. Use your own graph paper for this portion.

17.	
$f(x) = \begin{cases} x+1 \\ 2x-4 \end{cases}$	if $0 \le x < 5$
$f(x) = \{2x - 4\}$	<i>if</i> $5 \le x < 10$

Domain: _____

Range:

$$f(x) = \begin{cases} 3x - 4 & \text{if } 0 \le x < 6 \\ 20 - x & \text{if } 6 \le x < 12 \end{cases}$$

Domain: _____

Range:

$$f(x) = \begin{cases} 20 & \text{if } 0 \le x < 10\\ \frac{x}{2} + 15 & \text{if } 10 \le x < 20 \end{cases}$$

Domain: _____

Range:

$$f(x) = \begin{cases} 4x & \text{if } 0 \le x < 2\\ -2x + 10 & \text{if } 2 \le x < 5\\ 2 & \text{if } 5 \le x < 10 \end{cases}$$

Domain: _____

Range:

$$f(x) = \begin{cases} 4x & \text{if } 0 \le x < 2\\ -2x + 10 & \text{if } 2 \le x < 5\\ 2 & \text{if } 5 \le x < 10 \end{cases} \quad f(x) = \begin{cases} -2 & \text{if } x < 0\\ x + 1 & \text{if } 0 \le x \le 10\\ -\frac{1}{2}x + 16 & \text{if } x > 10 \end{cases}$$

Domain: _____

Range: _____

$$f(x) = \begin{cases} 2 & \text{if } x < 1\\ 2x & \text{if } 1 \le x \le 3\\ 7 - \frac{1}{3}x & \text{if } x > 3 \end{cases}$$

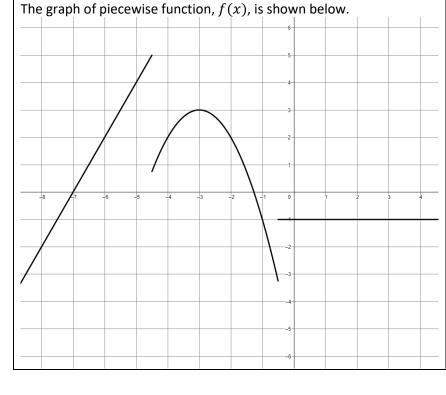
Domain: _____

Range:

23.
$$h(x) = \begin{cases} 3 - x & \text{if } -8 < x < -3 \\ 9 & \text{if } -3 \le x < 1 \\ x^2 + 3 & \text{if } 1 \le x \le 2 \\ -3 & \text{if } x > 2 \end{cases}$$

Domain: _____

Range:


24. $f(x) = \begin{cases} 5 - x & \text{if } x < 2 \\ x - 1 & \text{if } 2 \le x \le 10 \end{cases}$

Domain: _____

Range: _____

Evaluating Piecewise Functions given a graph.

Reminder - When graphing a function, what are you showing?

Evaluate each using the graph.

13.
$$f(1) =$$

14.
$$f(-8) =$$

15.
$$f(-3) =$$

16.
$$f(3) =$$

17.
$$f(-1) =$$

18.
$$f(-5) =$$