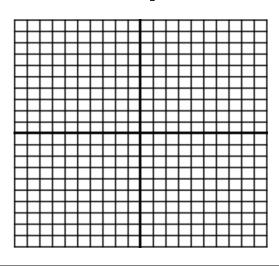
<u>FOUNDATIONS – Relationship Patterns, Functions, and Using a Graphing Calculator</u>

Activity 1 – V	Vhy do we write r	numbers the way	we do?				
	m, do we wite i	idinacia the way					
	tal at Calacata Es	. • .					
	icket Sales at a Fa		ren and \$9 for	adults. On one	particular day, tl	he fair made \$513	on
ticket sales.	•	ii are y i ioi eiiia	remana 95 tor	addits. On one	particular day, ti	ne ran made 9313	On

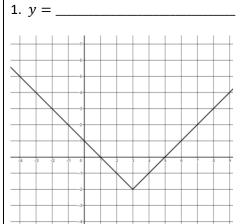
More Practice

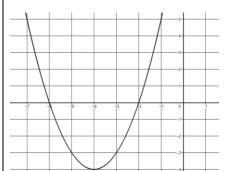

Find four solutions for the equation $y = \frac{1}{2}x - 7$.

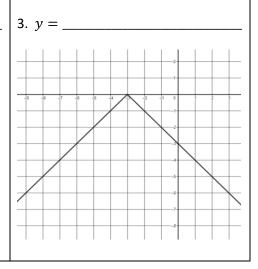
Ticket sales to a particular fair are \$3 for children and \$7 for adults. Find 4 different combinations of ticket sales for children and adults where the total profit is \$237.

Ticket sales to a particular fair are \$3 for children and \$7 for adults. Let x equal the number of child tickets, and let y equal the number of adult tickets.

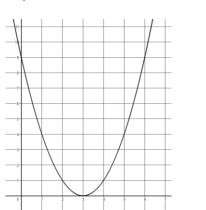
Write an equation for combinations of ticket sales if the total sales is \$237. Equation must contain the variables x and y.

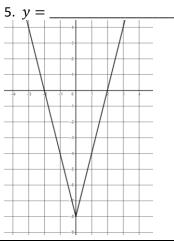

Graph the linear function $y = \frac{1}{2}x - 7$.

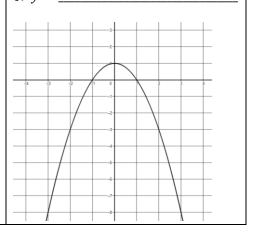



Graphing Utility Activity – Transformations Review

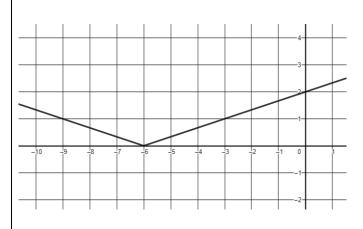
Transformation Notes:

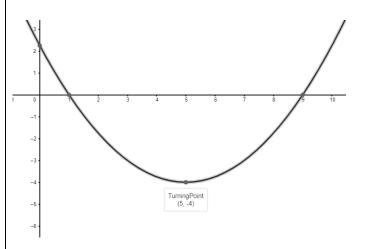

* Determine an equation for each graph by using a graphing utility to manipulate the equation y = |x| or $y = x^2$.

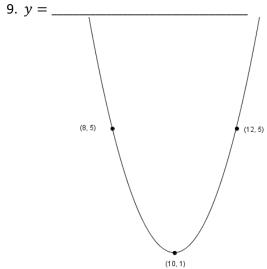




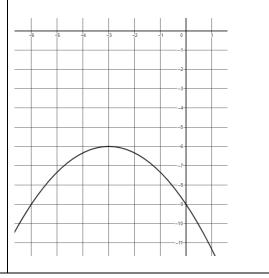
4. *y* = _____




6. *y* = _____

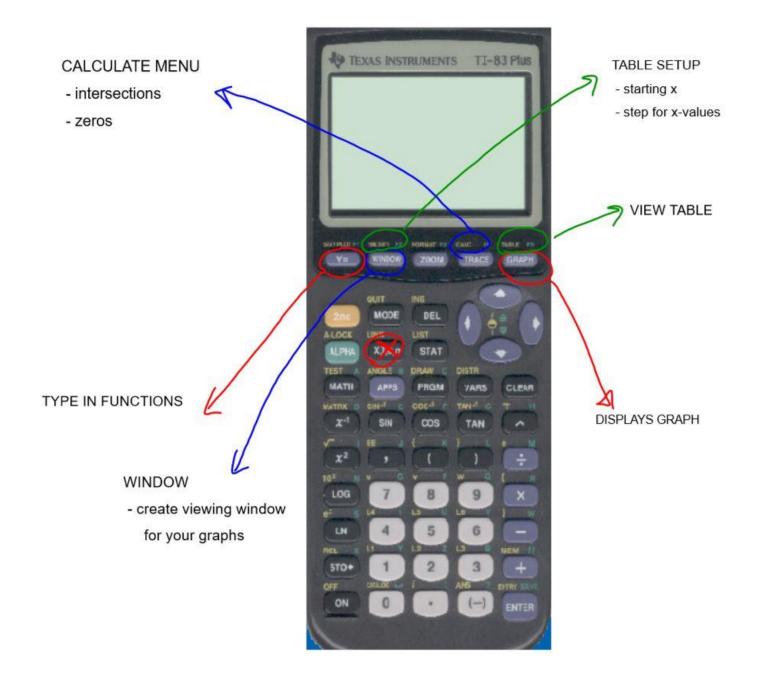


7. *y* = _____



8. *y* = _____

10. *y* = _____

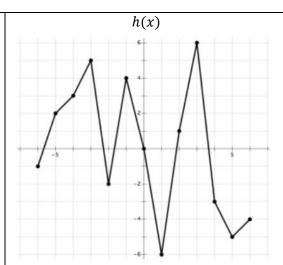


Algebra 2 – Enrichment

We need to look at our options and make connections about solving equations. There is always more than one way to find solutions.

Solved Algebraically or G & C	Solved by finding Intersections	Solved by finding Zeroes
Solved Algebraically or G & C $7x + 2 = 3x + 94$, , ,	, - 0
2+5x =3		
$2x^2 - 7x = 15$		
$4x^2 = -x + 3$		
4x = -x + 3		

Solved Algebraically $2^x + 7 = 52$	Solved by finding Intersections	Solved by finding Zeroes
$2^x + 7 = 52$		
$8(x-2)^3 + 1 = 89$		
$\sqrt{x+2} = 4\sqrt{x+1}$		
<u> </u>		
$\sqrt{4-2t-t^2}=t+2$		


Reading and Evaluating Functions

		_	_		
IN	റ	Т	е	S	:

Given functions f, g, and h, evaluate each.

$$f(x) = 3x^2 - 7$$

x	g(x)
-3	12
-2	6
-1	-4
0	2
1	-7
2	-1
3	0
4	4
5	8

(This graph uses a scale of 1 unit)

1.
$$g(5) =$$

2.
$$h(5) =$$

3.
$$f(5) =$$

4.
$$h(-1) =$$

5.
$$f(2) =$$

6.
$$h(3) =$$

7.
$$g(-2) =$$

8.
$$f(0) =$$

9.
$$g(0) =$$

10.
$$f(-2) =$$

11.
$$h(-6) =$$

12.
$$f(-5) =$$

13.
$$f(g(2)) =$$

14.
$$g(f(2)) =$$

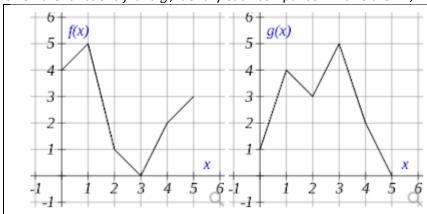
15.
$$h(g(-1)) =$$

16.
$$f(h(-5)) =$$

17.
$$g(g(3)) =$$

18.
$$h(h(-4)) =$$

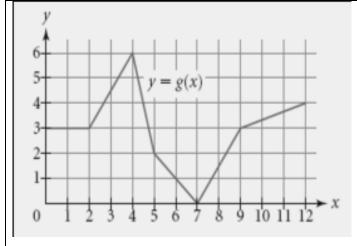
19.
$$g \circ h(2) =$$


20.
$$f \circ f(2) =$$

Notes:			
Inverses			
Determine the inverse functio	ns below and then evaluate the ction $f(x)$ below. Call the	e questions that follow. Algebraically determine the i	nverse of the function $r(x)$
inverse $g(x)$.	, (.,	below. Call the inverse $s(x)$.	
5		r(x) =	$\sqrt{x+5}$
2			
-3 -2 -1 0 1	2 3 4 5 6		
(This graph uses	a scale of 1 unit)		
21. <i>f</i> (-2) =	22. <i>f</i> (6) =	23. <i>r</i> (-1) =	24. <i>r</i> (4) =
25. <i>g</i> (-1) =	26. <i>g</i> (1) =	27. s(1) =	28. <i>s</i> (4) =
29. $f(g(2)) =$	30. $g(f(-3)) =$	31. $r(s(3)) =$	32. $s(r(11)) =$
33. $g(f(12)) =$	$34. \ g(f(x)) =$	35. $r(s(5)) =$	36. $s(r(2.5)) =$
	1		

Notes:

Comparing Function Values


Given the functions f and g, identify each comparison with either =, <, >.

37. $f(1)$ $g(1)$	38. <i>f</i> (3) <i>g</i> (3)
39. $f(0)$ $g(0)$	40. <i>f</i> (4) <i>g</i> (4)
41. $f(2)$ $g(1)$	42. $f(3)$ $g(5)$
43. <i>f</i> (5) <i>g</i> (.5)	44. <i>f</i> (4.5) <i>g</i> (1)
45. $f(2.5)$ $f(3.5)$	46. <i>g</i> (0) <i>g</i> (4.5)

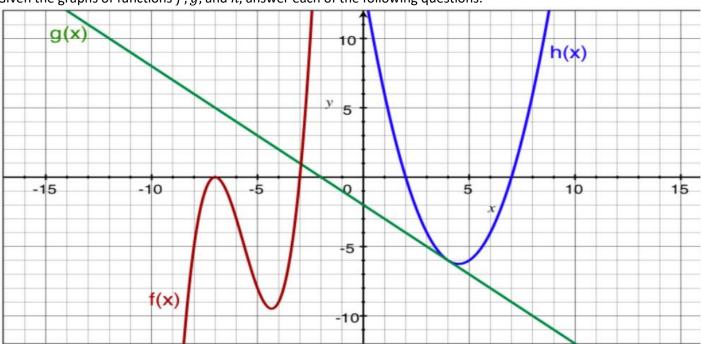
Challenge

Given the function y = g(x), answer each of the following questions.

47.
$$g(9) =$$

48. When is g(x) = 0?

49. g(11) =


50. When is g(x) = 8?

51. If g(5) = p, what is g(p)?

52. Where is g(x) = 3?

53. If g(3) = r, what is g(r)?

Given the graphs of functions f, g, and h, answer each of the following questions.

You may need to approximate some of these answers.

54. <i>h</i> (8) =	55. <i>g</i> (-5) =	56. <i>f</i> (-5) =
57. $g(f(-8)) =$	58. <i>h</i> (2) =	59. <i>f</i> (-7) =
60. Where is $g(x) = 0$?	61. <i>g</i> (-10) =	62. When is $g(x) = h(x)$?
63. When is $g(x) = f(x)$?	64. $g(h(4)) =$	65. $h(g(-9)) =$

Given the graphs of functions r, s, and t, **approximate** answers (to the nearest tenth) for each of the following questions. s(x) r(x) t(x) 3. t(3) =1. r(4) =2. s(1) =4. r(-1.5) =6. s(6.5) =5. r(r(3)) =7. Where is r(x) = 0? 8. s(t(1)) =11. *t*(0) = 9. Where is r(x) = t(x)? 10. s(r(5.5)) =12. Where is s(x) = 0? 13. r(2) =14. Where is r(x) = s(x)? 15. Where is s(x) = t(x)? 16. s(-1) =

Please recopy your solutions from the previous page to help with the accuracy of the next section.

:
s(x) = 0?
:

Now something else to apply. See if you can determine the solutions to the questions below using another method.

Here are the equations for the three functions.

$$r(x) = -\frac{7}{2}x + 24$$

$$s(x) = 2(x-3)^2$$

$$t(x)=3^x$$

Use a calculator (if needed) and the function equations above to evaluate each of the following.

Your solutions now must be accurate to the nearest hundredth (2 decimal places).

	T		
17. $r(4) =$	18. $s(1) =$	19. $t(3) =$	20. $r(-1.5) =$
21 "("(2)) -	22 2((5) -	22 Whara is $\sigma(x) = 0.2$	24 2(t(1)) -
21. $r(r(3)) =$	22. $s(6.5) =$	23. Where is $r(x) = 0$?	24. $s(t(1)) =$
25. Where is $r(x) = t(x)$?	26. $s(r(5.5)) =$	27. <i>t</i> (0) =	28. Where is $s(x) = 0$?
29. <i>r</i> (2) =	30. Where is $r(x) = s(x)$?	31. Where is $s(x) = t(x)$?	32. $s(-1) =$

Solve the following equations. You can use the information above to find the solutions...or you can use other methods.

$33\frac{7}{2}x + 24 = 0$	$34\frac{7}{2}x + 24 = 3^x$	$35. \ 2(x-3)^2 = 0$	$36\frac{7}{2}x + 24 = 2(x-3)^2$	$37. \ 2(x-3)^2 = 3^x$